118k views
3 votes
Find the solution to the differential equation

dB/dt+4B=20

with B(1)=30

User Ramraj
by
5.0k points

1 Answer

7 votes

Answer:

The solution of the differential equation is
B=5+25e^(-4t+4)

Explanation:

The differential equation
(dB)/(dt)+4B=20 is a first order separable ordinary differential equation (ODE). We know this because a separable first-order ODE has the form:


y'(t)=g(t)\cdot h(y)

where g(t) and h(y) are given functions.

We can rewrite our differential equation in the form of a first-order separable ODE in this way:


(dB)/(dt)+4B=20\\(dB)/(dt)=20-4B\\(dB)/(dt)=4(5-B)\\(1)/(5-B)(dB)/(dt)=4

Integrating both sides


(1)/(5-B)(dB)/(dt)=4\\(1)/(5-B)\cdot dB=4\cdot dt\\\\\int\limits {(1)/(5-B)} \, dB=\int\limits {4} \, dt

The integral of left-side is:


\int\limits {(1)/(5-B)} \, dB\\\mathrm{Apply\:u-substitution:}\:u=5-B\\\int\limits {(1)/(5-B)} \, dB=\int\limits {(1)/(u)} \, dB\\\mathrm{du=-dB}\\-\int\limits {(1)/(u)} \,du\\\mathrm{Use\:the\:common\:integral}:\quad \int (1)/(u)du=\ln \left(\left|u\right|\right)\\-\int\limits {(1)/(u)} \,du =-\ln \left|u\right|\\\mathrm{Substitute\:back}\:u=5-B\\-\ln \left|5-B\right|\\\mathrm{Add\:a\:constant\:to\:the\:solution}\\-\ln \left|5-B\right|+C

The integral of right-side is:


\int\limits {4} \, dt = 4t + C

We can join the constants, and this is the implicit general solution


-\ln \left|5-B\right|+C=4t + C\\-\ln \left|5-B\right|=4t + D

If we want to find the explicit general solution of the differential equation

We isolate B


-\ln \left|5-B\right|=4t + D\\\ln \left|5-B\right|=-4t+D\\\left|5-B\right|=e^(-4t+D)

Recall the definition of |x|


|x|=\left \{ {{x, \:if \>x\geq \>0 } \atop {-x, \:if \>x<\>0}} \right.

So


\left|5-B\right|=e^(-4t+D)\\5-B= \pm \:e^(-4t+D)\\B=5 \pm \:e^(-4t+D)\\B=5\pm \:e^(-4t)\cdot e^(D)\\B=5+Ae^(-4t)

where
A=\pm e^(D)

Now B(1) =30 implies


B=5+Ae^(-4t)\\30=5+Ae^(-4)\\30-5=Ae^(-4)\\25e^(4)=A

And the solution is


B=5+(25e^(4))e^(-4t)\\B=5+25e^(-4t+4)

User Cdm
by
5.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.