128k views
5 votes
Let A, B, and C be sets in a universal set U. We are given n(U) = 75, n(A) = 39, n(B) = 43, n(C) = 43, n(A ∩ B) = 27, n(A ∩ C) = 21, n(B ∩ C) = 28, n(A ∩ B ∩ CC) = 12. Find the following values.

(a) n(AC ∩ B ∩ C)

b) n(A ∩ BC ∩ CC)?

User Satyadeep
by
5.2k points

1 Answer

7 votes

a.


B\cap C=(B\cap C)\cap(A\cup A^c)=(A\cap B\cap C)\cup(A^c\cap B\cap C)

which means


n(B\cap C)=n(A\cap B\cap C)+n(A^c\cap B\cap C)


\implies n(A^c\cap B\cap C)=28-n(A\cap B\cap C)

Similarly,


n(A\cap B)=n(A\cap B\cap C)+n(A\cap B\cap C^c)


\implies n(A\cap B\cap C)=27-12=15

Then


n(A^c\cap B\cap C)=28-15=\boxed{13}

b.


n(A)=n(A\cap(B\cup C))+n(A\cap(B\cup C)^c)


n(A)=n(A\cap(B\cup C))+n(A\cap B^c\cap C^c)


\implies n(A\cap B^c\cap C^c)=39-n(A\cap(B\cup C))

Note that
A\cap(B\cup C)=(A\cap B)\cup(A\cap C).

By the inclusion-exclusion principle,


n(A\cap(B\cup C))=n(A\cap B)+n(A\cap C)-n((A\cap B)\cap(A\cap C))

and
(A\cap B)\cap(A\cap C)=A\cap B\cap C, so


n(A\cap(B\cup C))=27+21-15=33

Then


n(A\cap B^c\cap C^c)=39-33=\boxed6

User Aaditya Raj
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.