36.1k views
2 votes
Evaluate C_n.xP^xQn-x For the given n=7, x=2, p=1/2

User Xni
by
8.0k points

1 Answer

4 votes

Answer:


C(n,x)\ p^x\ q^(n-x)=(21)/(128) when n=7, x=2,
p=(1)/(2)

Explanation:

Given : Information n=7, x=2,
p=(1)/(2)

To find : Evaluate
C(n,x)\ p^x\ q^(n-x)

Solution :

The formula given is a binomial distribution,


C(n,x)\ p^x\ q^(n-x) can be written as
^nC_x\ p^x\ q^(n-x)

Here, n=7 x=2 and
p=(1)/(2)


q=1-p=1-(1)/(2)=(1)/(2)

Substitute all values in the formula,


=^7C_2\ ((1)/(2))^2\ ((1)/(2))^(7-2)


=(7!)/(2!(7-2)!)\ ((1)/(2))^2\ ((1)/(2))^(5)


=(7!)/(2!5!)\ ((1)/(2))^(2+5)


=(7* 6* 5!)/(2* 5!)\ ((1)/(2))^(7)


=21*(1)/(128)


=(21)/(128)

Therefore,
C(n,x)\ p^x\ q^(n-x)=(21)/(128) when n=7, x=2,
p=(1)/(2)

User Calanus
by
7.8k points