Answer:
The vertex:
![((3)/(4),-(41)/(4) )](https://img.qammunity.org/2020/formulas/mathematics/college/eve8727wbvbjzvt329j9bwrh78akieur4h.png)
The vertical intercept is:
![y=-8](https://img.qammunity.org/2020/formulas/mathematics/college/nqvcn3ugfhk6522xrm5td7g4037tyteulu.png)
The coordinates of the two intercepts of the parabola are
and
![((3-√(41) )/(4) , 0)](https://img.qammunity.org/2020/formulas/mathematics/college/8mhbslvqz8469jxouxpv3lj0zu1gk6mbwa.png)
Explanation:
To find the vertex of the parabola
you need to:
1. Find the coefficients a, b, and c of the parabola equation
![a=4, b=-6, \:and \:c=-8](https://img.qammunity.org/2020/formulas/mathematics/college/s29mobok74nif32ol2pii3zghbnnqpjj6w.png)
2. You can apply this formula to find x-coordinate of the vertex
, so
![x=-(-6)/(2\cdot 4)\\x=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/3ig396sg33v1x93pk0gqd39rhwuudl0ssy.png)
3. To find the y-coordinate of the vertex you use the parabola equation and x-coordinate of the vertex (
)
![f(-(b)/(2a))=a(-(b)/(2a))^2+b(-(b)/(2a))+c\\f((3)/(4))=4\cdot ((3)/(4))^2-6\cdot ((3)/(4))-8\\y=(-41)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/xidprp1w5nxf5cy8ui1l7zip0bptn1dszh.png)
To find the vertical intercept you need to evaluate x = 0 into the parabola equation
![f(x)=4x^2-6x-8\\f(0)=4(0)^2-6\cdot 0-0\\f(0)=-8](https://img.qammunity.org/2020/formulas/mathematics/college/hxy4bapxfo1prguj9ca5nmiao8wsvx67op.png)
To find the coordinates of the two intercepts of the parabola you need to solve the parabola by completing the square
![\mathrm{Add\:}8\mathrm{\:to\:both\:sides}](https://img.qammunity.org/2020/formulas/mathematics/college/oyikizvjgic3rztf306894nu1icwsdhhjy.png)
![x^2-6x-8+8=0+8](https://img.qammunity.org/2020/formulas/mathematics/college/gvss8j9pwyf8yrg1ghwzyhxtb0ui06b4nk.png)
![\mathrm{Simplify}](https://img.qammunity.org/2020/formulas/computers-and-technology/college/as34vfk02redftpg4ept3sfvsrbbwpzq6a.png)
![4x^2-6x=8](https://img.qammunity.org/2020/formulas/mathematics/college/5n2ddp8b778fd7x64auujme2wzcn1olmki.png)
![\mathrm{Divide\:both\:sides\:by\:}4](https://img.qammunity.org/2020/formulas/mathematics/college/hwfvpu6bsy2nb8lpkyj60617kqdt1vfz01.png)
![(4x^2-6x)/(4)=(8)/(4)\\x^2-(3x)/(2)=2](https://img.qammunity.org/2020/formulas/mathematics/college/ozqeexetmxnwugjgj4clmdpcew7kobyr1f.png)
![\mathrm{Write\:equation\:in\:the\:form:\:\:}x^2+2ax+a^2=\left(x+a\right)^2](https://img.qammunity.org/2020/formulas/mathematics/college/r8n6dar2hu64l4rh4nmpw8r9c3iq14icr6.png)
![x^2-(3x)/(2)+\left(-(3)/(4)\right)^2=2+\left(-(3)/(4)\right)^2\\x^2-(3x)/(2)+\left(-(3)/(4)\right)^2=(41)/(16)](https://img.qammunity.org/2020/formulas/mathematics/college/dn8wq7dn9z9il2i9qsl9uhutnemtck0l3h.png)
![\left(x-(3)/(4)\right)^2=(41)/(16)](https://img.qammunity.org/2020/formulas/mathematics/college/pmguv58ls4j85qmohtle1c3eoium0k28zm.png)
![\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)](https://img.qammunity.org/2020/formulas/mathematics/college/fok3i7b504y9rwijnz8bauxjipcnitciwh.png)
![x_1=(√(41)+3)/(4),\:x_2=(-√(41)+3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/3d44onijjbmfvgafrd3pt8wtiymre6pb31.png)