Answer:
Using the definition of Covariance, Cov(X,Y) = E[(x – My)(Y – My)], prove the followings. a. Cov(X,Y) = E(XY) - Mx Hy b. Cov(X,Y) = Cov(Y, X) C. Cov(X,X) = Var(X) d. Cov(X + Z,Y) = Cov(X,Y) + Cov(Z,Y) e. Cov(EX,Y)= XCov(X,Y) f. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y) g. Var(EX) = Var(X) + Ej Cov(X, X;)