Answer:
![y(x)\ =\ \sum_(m=0)^(\infty)\frac{-(-1)^m.{(4x)}^(m+1)}{2m!}\ +\ \sum_(m=0)^(\infty)\frac{-(-1)^m.(4x){m+1}}{(2m+1)!}.](https://img.qammunity.org/2020/formulas/mathematics/college/l05th8y2ymjjrom66c5fkvl1euhisb8qwk.png)
Explanation:
Given differential equation is
We have to find the power series solution of given differential equation about the ordinary point x = 0.
Power series solution of any given differential equation can be given by
![y(x)\ =\ C_0+C_1.x+C_2.(x^2)/(2!)+C_3.(x^3)/(3!)+....](https://img.qammunity.org/2020/formulas/mathematics/college/j069yl9eu3qmmh8jmijosizbnql3gqh5yx.png)
![=\ \sum_(n=0)^(\infty)C_n.(x^n)/(n!)](https://img.qammunity.org/2020/formulas/mathematics/college/cehx67cx5mldytmoaqfoscw1d6cs7bd9rm.png)
![=>y'(x)\ =\ \sum_(n=1)^(\infty)(n.C_n.x^(n-1))/(n!)](https://img.qammunity.org/2020/formulas/mathematics/college/1x9m63hstqwvsck51bqlq1ekvfmqh1oqjr.png)
![=>y''(x)\ =\ \sum_(n=2)^(\infty)\fracf{n.(n-1)C_n.x^(n-2)}{n!}](https://img.qammunity.org/2020/formulas/mathematics/college/82kegmkacmddqwgiyfsg5s3104poyfgx9c.png)
Now, by putting these values in equation (1), we have
![\sum_(n=2)^(\infty)\fracf{n.(n-1)C_n.x^(n-2)}{n!}\ +\ 4x\sum_(n=0)^(\infty)C_n.(x^n)/(n!)\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/4xqy2gf3e8oy8k2vy32ktle8564bn3q4kl.png)
![=>\ \sum_(n=0)^(\infty)\fracf{(n+1).(n+1)C_(n+2).x^(n)}{n!}\ +\ 4x\sum_(n=0)^(\infty)C_n.(x^n)/(n!)\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/23gg3dkpw334sjalo73273kv3ve8girfbl.png)
![=>\ \sum_(n=0)^(\infty)[(n+1).(n+2)C_(n+2)+4xC_n]x^n\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/va4vbdfxcxfp3so7myiujrhgjkihvffkfo.png)
![=>\ (n+1).(n+2).C_(n+2)+4x.C_n\ =\ 0](https://img.qammunity.org/2020/formulas/mathematics/college/41q5x5s9fbrdtjbq8r00ie9obf9mfg56jc.png)
![=>\ C_(n+2)\ =\ (-4x)/((n+1)(n+2)).C_n](https://img.qammunity.org/2020/formulas/mathematics/college/mgm5ldmx38unwiu9neyt9bnid3d2xzomka.png)
for n = 0
![C_2\ =\ (-4x)/(2).C_0](https://img.qammunity.org/2020/formulas/mathematics/college/a0f19qv2oa28wtcn4rlhjj2sgjs9lqq8as.png)
for n = 1
![C_3\ =\ (-4x)/(6).C_1](https://img.qammunity.org/2020/formulas/mathematics/college/e4pl0p9mghl9nzv8yjfv6vwlko9n47mv3s.png)
for n = 2
![C_4\ =\ (-4x)/(12).C_2](https://img.qammunity.org/2020/formulas/mathematics/college/uyj1k6qs20lzryc23kuf365xdk0qrigkvz.png)
![=\ (16x^2)/(24).C_0](https://img.qammunity.org/2020/formulas/mathematics/college/5usvgc6wxnvq0shdhibl0bkqjxvm257eu2.png)
for n = 3
![C_5\ =\ (-4x)/(20).C_3](https://img.qammunity.org/2020/formulas/mathematics/college/3355o94jt7mx3kmb5qqx9m1bl2pgnniiqg.png)
![=\ (16x^2)/(120)](https://img.qammunity.org/2020/formulas/mathematics/college/7u8k8rtrvtk6zx4q8omrd19fvtcr943752.png)
for n=4
![C_6\ =\ (-4x)/(30)C_4](https://img.qammunity.org/2020/formulas/mathematics/college/405uowt31qkiu4c7rw5jmfcqsecrjqaynu.png)
![=\ (-64.x^3)/(720).C_0](https://img.qammunity.org/2020/formulas/mathematics/college/dwtwsmtkh02trtmwd36gezrxcdm11nv19l.png)
As we can see for
for even value of n i.e n = 2m where m is any integer.
![C_2m\ =\ \sum_(m=0)^(\infty)\frac{-(-1)^m.{(4x)}^(m+1)}{2m!}](https://img.qammunity.org/2020/formulas/mathematics/college/6vjlmk5bj91supz8uysmcbyxw0kxokm10y.png)
for odd value of n i.e n =2m+1 , where m is any integer.
![C_(2m+1)\ =\ \sum_(m=0)^(\infty)(-(-1)^m.(4x)^(m+1))/((2m+1)!)](https://img.qammunity.org/2020/formulas/mathematics/college/9hi03v82l22ih4a5ox153d379crg9s93nx.png)
So, the power series solution about the ordinary point x=0, can be given by
![y(x)\ =\ \sum_(n=0)^(\infty)(C_n.x^n)/(n!)](https://img.qammunity.org/2020/formulas/mathematics/college/st28yd19kk7el6qijntntu69ose6r3tw93.png)
![=\ \sum_(m=0)^(\infty)\frac{-(-1)^m.{(4x)}^(m+1)}{2m!}\ +\ \sum_(m=0)^(\infty)(-(-1)^m.(4x)^(m+1))/((2m+1)!).](https://img.qammunity.org/2020/formulas/mathematics/college/2htrnvm0z0k4391siszoipts6q5obnsg0z.png)