Answer:
a)
![Q(t)=Q_(0)e^((ln10/50)t)](https://img.qammunity.org/2020/formulas/mathematics/college/xdy0j1p8vticmtffud9vq80e600b59iv41.png)
b) 150min
Explanation:
a) Using the formula for colony growth
we need to find the specific value of k, to do this you'll use the time, initial and final number of colonies provided in your problem.
![Q(t)=Q_(0)e^(kt)\\\\10000=1000e^(k(50)) \\\\(10000)/(1000)=e^(50k) \\\\10=e^(50k)\\ ln(10=e^(50k))\\\\ln10=50k\\\\k=ln10/50\\\\Q(t)=Q_(0)e^((ln10/50)t)\\\\](https://img.qammunity.org/2020/formulas/mathematics/college/ram2czb05e2v5byl9pt6olxvz3f9woocqc.png)
b) Once we have our expression we only have to use our final and initial number of bacteria to find t.
![Q(t)=Q_(0)e^((ln10/50)t)\\\\\\1000000=1000e^(0.046t)\\ 1000=e^(0.046t)\\ln( 1000=e^(0.046t))\\ln1000=0.046t\\t=ln1000/0.046\\t=150 minutes](https://img.qammunity.org/2020/formulas/mathematics/college/1a70lgo5kdbq99lppc8q8de95v1lh7yifq.png)
I hope you find this information useful! good luck!