79.3k views
3 votes
Repeated decimals can be written as an infinite geometric series to help convert them to a fraction. Consider the repeating decimal below.

0.232323… = 0.23 + 0.23(0.01) + 0.23(0.01)2 + …
What is a1?
What is r?

User Jeffld
by
7.3k points

2 Answers

3 votes

Answer:

a1= 0.23

r=0.01

:)

Explanation:

User Sultan Ali
by
9.3k points
4 votes

Answer:


a_1=0.23 and
r=0.1.

Explanation:

It is given that Repeated decimals can be written as an infinite geometric series to help convert them to a fraction.

Consider the repeating decimal below.


0.232323…=0.23+0.23(0.01)+0.23(0.01)^2+…

We need to find the value of
a_1\text{ and }r.


a_1 is the first term of the series. So,


a_1=0.23


r is the common ratio of the series. So,


r=(a_2)/(a_1)=(0.23(0.1))/(0.23)=0.1

Therefore,
a_1=0.23 and
r=0.1.

User RichK
by
8.5k points