Answer:
T = 23.54 N
Step-by-step explanation:
Given,
- mass of the pulley = M = 8.0 kg
- mass of the object = m= 6.0 kg
- moment of inertia of the disk = I =
![(1)/(2)MR^2](https://img.qammunity.org/2020/formulas/physics/high-school/w684850vkwd526ky56bch2e6tnjz8bf3f5.png)
Let 'T' be the tension in the string and 'a' be the acceleration of the block,
Hence, the angular acceleration of the pulley =
![\alpha\ =\ (a)/(R)](https://img.qammunity.org/2020/formulas/physics/high-school/gr6hgua2onl7d8bsoolt29254aaeoztznq.png)
From the f.b.d. of the mass
![mg\ -\ T\ =\ ma\\\Rightarrow a\ =\ (mg\ -\ T)/(m)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (1),](https://img.qammunity.org/2020/formulas/physics/high-school/cnly5ihzjlsemf7x7cwapvbss6q0uakxvw.png)
From the f.b.d. of the pulley,
![\sum \tau\ =\ I\alpha\\\Rightarrow TR\ =\ (1)/(2)MR^2* (a)/(R)\\\Rightarrow a\ =\ (2T)/(M)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,eqn (2)](https://img.qammunity.org/2020/formulas/physics/high-school/ibxsc1jtg92w39ej62tcybcgb27ieale7p.png)
From the eqn (1) and (2), we get,
![(mg\ -\ T)/(m)\ =\ (2T)/(M)\\\Rightarrow Mmg\ -\ MT\ =\ 2mT\\\Rightarrow Mmg\ =\ 2mT\ +\ MT\\\Rightarrow T\ =\ (Mmg)/(2m\ +\ M)\\\Rightarrow T\ = \ (8.0* 6.0* 9.81)/(2* 6.0\ +\ 8.0)\\\Rightarrow T\ =\ 23.54\ N](https://img.qammunity.org/2020/formulas/physics/high-school/6wr1mnjnk11q083wqnr7rhnindrm33rpsf.png)
Hence, the tension in the cord while the mass is falling is 23.54 N