Answer:
![V=35.185,8 km^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/38lyy5fanx1tne5fnqskep73a0fo2y81vq.png)
Explanation:
The volume of a cone can be calculated using the following formula:
![V=(\pi . r^(2).h )/(3) \\R= radius\\H=height](https://img.qammunity.org/2020/formulas/mathematics/college/gi1p4i1vdwfmxm4933rnv8isvw41cyeryh.png)
We know that the radius is the half of the figure's diameter. In this excercise:
![r= 80 km : 2 = 40 km](https://img.qammunity.org/2020/formulas/mathematics/college/oxwyx4pykgmd3n6p6r6k7cfuyd1jv4d1df.png)
Height in this case is 21 km.
So supplanting we get:
![V=(\pi.(40km)^(2).21km )/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/3jlj7jecs7ohytqnpp7enzid3nthq6ghcv.png)
![V=(\pi.1600km^(2).21km )/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/4l6muyxqh85ltpsoaub7bf089kuqn1y3j6.png)
![V=(\pi.1600km^(2).21km )/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/4l6muyxqh85ltpsoaub7bf089kuqn1y3j6.png)
We have in total three "km"'s, and that is equal to
. Remember that when we want to calculate a volume, the unit has to be raised to the third power.
![V=(\105.557,5 km^(3) )/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/441jx830d5t3xaw24tp013wx5la7pcj14c.png)
![V=35.185,8 km^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/38lyy5fanx1tne5fnqskep73a0fo2y81vq.png)