Answer:
a) 0.1375
b) 0.3708
c) 0.56
d) 0.05
Explanation:
a) If 4.4 is the mean number of blank in a sheet 4ft x 8 ft = 32ft^2. Then the mean number of blank per square foot is 4.4/32 =0.1375
b) X=Number of blank pixels per ft^2
![X=Poisson(\lambda), E[X]=\lambda=0.1375, Var(X)=\lambda, \sigma =√(\lambda) =√(0.1375)=0.3708](https://img.qammunity.org/2020/formulas/mathematics/college/5u9dsnuz863ss7b2kex65otglyebvpv4nd.png)
c) The mean number of blank in a sheet 2ft x 3 ft = 6ft^2 is 6*0.1375=0.825
Then
![X=Poisson(\lambda=0.825)](https://img.qammunity.org/2020/formulas/mathematics/college/grg20c1ir2fl3xlvkwxrro10y8iybbhtwn.png)
![P(X\geq 1)=1-P(X=0)](https://img.qammunity.org/2020/formulas/mathematics/college/wgon20rexrowekdg6zrretls6o586knff5.png)
![P(X=x)=(e^(-\lambda)\lambda^x)/(x!), P(X=0)=e^(-0.825)=0.43](https://img.qammunity.org/2020/formulas/mathematics/college/d70aq9fl2zd8jisa4pgmwjicq0dago0938.png)
![P(X\geq 1)=1-0.43=0.56](https://img.qammunity.org/2020/formulas/mathematics/college/h9jloitm6wu2vqekijhmryle9zo7o8r19o.png)
d)
![P(X>2)=1-P(X\leq 2)=1-\sum_(i=0)^(2)P(X=i)](https://img.qammunity.org/2020/formulas/mathematics/college/50xlmro2s7hgo0s96wp32zzydw1ezqswop.png)
![P(X>2)=1-\sum_(i=0)^(2)(e^(-\lambda)\lambda^(i))/(i!), \lambda=0.825](https://img.qammunity.org/2020/formulas/mathematics/college/vgzp3fg9oobp79vykv8w7v83lcji86e5va.png)
P(X>2)=1-0.94=0.05