Answer:
See explanation
Explanation:
Arrange the salaries $41,027, $35,901, $31,159, $33,664, $35,166, $39,338, $32,691 in ascending order:
$31,159, $32,691, $33,664, $35,166, $35,901, $39,338, $41,027
A) The mean salary (to the nearest dollar) is
![(\$31,159+\$32,691+\$33,664+\$35,166+\$35,901+\$39,338+\$41,027)/(7)=\$35,564](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nn3g27w28wca8fllw5c5cz3q1rcjlqqeke.png)
B) Minimum
![= \$31,159](https://img.qammunity.org/2020/formulas/mathematics/middle-school/69d4ylsa97nxrv30tyu1p3wgsalbcueaee.png)
![Q_1=\$32,691](https://img.qammunity.org/2020/formulas/mathematics/middle-school/chlm49ois7w8s7vkywat82lrg8yudbjc2s.png)
Median
![=\$35,166](https://img.qammunity.org/2020/formulas/mathematics/middle-school/33u1jcgv5kv6xer02t4qzqtzf1dm631f98.png)
![Q_2=\$39,338](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5gznk2goxm2dvqr94jgxdnkq8gezhm9jg1.png)
Maximum
![=\$41,027](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ch6413d841jrnf2xq7xl66h9037ktthu5u.png)
C) The standard deviation of this data set can be calculated using formula
![\sigma=\sqrt{\frac{\sum(x_i-\text{mean})^2}{n}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bvo1hlk9iod437m9dkt6mibufb34bq4u7l.png)
First, find
![(x_i-\text{mean})^2:](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gjdpol8rz5p4aynpbhwzwb7slpd37j2t8i.png)
![(31,159-35,564)^2=19,404,025\\ \\(32,691-35,564)^2=8,254,129\\ \\(33,664-35,564)^2=3,610,000\\ \\(35,166-35,564)^2=158,404\\ \\(35,901-35,564)^2=113,569\\ \\(39,338-35,564)^2=14,243,076\\ \\(41,027-35,564)^2=29,844,369](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yie3j64ps6z6tk8ieg2zwug7exiz8lrg18.png)
Now,
![\sigma =\sqrt{(75,627,572)/(7)}\approx 3,286](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b83upaei9oy52h3xiwo85dfzhc2ayq41t3.png)