Answer:
Velocity of the electron = v = 1.2\times 10^8\ m/s.
Step-by-step explanation:
Given,
- Mass of the electron =
![m_e\ =\ 9* 10^(-31)\ kg](https://img.qammunity.org/2020/formulas/physics/high-school/o4i4nlj7qs45ycg1a5duaakeqg0gm5sszx.png)
- Charge on the electron =
![q_e\ =\ 1.62* 10^(-19)\ C](https://img.qammunity.org/2020/formulas/physics/high-school/dwkx0e150x0ne0kazkng65iy48xgkn4dt3.png)
- Charge density of the ring =
![\rho\ =\ +1.00* 10^(-6)\ C/m](https://img.qammunity.org/2020/formulas/physics/high-school/i1lku0kn9kgrlau9p9xswzbc8qeyreijvx.png)
- Radius of the ring = R = 0.70 m
- Distance between the electron ant the center or the ring = x = 0.5 m
Now total charge on the ring =
![Q\ =\ \rho* 2\pi R](https://img.qammunity.org/2020/formulas/physics/high-school/pwl30yy1z1ms34n0xxhvgn96b70tmg0d2r.png)
Potential energy due to the charged ring to the point on the x-axis is
![P.E.\ =\ (KQq_e)/(√(R^2\ +\ x^2))\\](https://img.qammunity.org/2020/formulas/physics/high-school/krj8c25zgdco5rd5xcvom52bgfr8pp6gb3.png)
Let v be the velocity of the electron at the center of the ring.
Total kinetic energy of the electron =
![(1)/(2)m_ev^2\\](https://img.qammunity.org/2020/formulas/physics/high-school/ll8uq8jgrt1prxzizqq52vtvzihwuaazj4.png)
Now, From the conservation of energy,
the total potential energy of the electron at initially is converted to the total kinetic energy of the electron at the center of the ring,
![\therefore P.E.\ =\ K.E.\\\Rightarrow (KQ)/(√(R^2\ +\ x^2))\ =\ (1)/(2)m_ev^2\\\Rightarrow v\ =\ sqrt{(2 KQq_e)/(m_e√(R^2\ +\ x^2))}\\\Rightarrow v\ =\ \sqrt{(2Kq_e\rho * 2\pi R)/(m_e√(R^2\ +\ x^2))}\\\Rightarrow v\ =\ \sqrt{(2* 9* 10^9* 1.0* 10^(-6)* 2* 3.14* 0.7* 1.6* 10^(-19))/(9* 10^(-31)* √(0.7^2\ +\ 0.5^2))}\\\Rightarrow v\ =\ 1.2* 10^8\ m/s.](https://img.qammunity.org/2020/formulas/physics/high-school/3qaouetkjlnxgt6vwtewdmscal4n5yeef8.png)
Hence the velocity of the electron on the center of the charged ring is
![1.2* 10^8\ m/s.](https://img.qammunity.org/2020/formulas/physics/high-school/2xydjaanyq98nz6zzyp67w415vjt0yhuz2.png)