Answer:
25 m/s, 36.9°
Step-by-step explanation:
The vertical position of the bag at time t is:
y = y₀ + v₀ t + ½ at²
y = 45 + (0) t + ½ (-9.8) t²
y = 45 − 4.9 t²
The vertical position of the ball at time t is:
y = y₀ + v₀ t + ½ at²
y = 0 + (v₀ sin θ) t + ½ (-9.8) t²
y = (v₀ sin θ) t − 4.9 t²
The two are equal when t = 3.
45 − 4.9 (3)² = (v₀ sin θ) (3) − 4.9 (3)²
15 = v₀ sin θ
The horizontal position of the ball at 3 seconds is 60 m:
x = x₀ + v₀ t + ½ at²
60 = 0 + (v₀ cos θ) (3) + ½ (0) (3)²
20 = v₀ cos θ
Two equations, two unknowns. First, divide the first equation by the second to find θ.
15/20 = (v₀ sin θ) / (v₀ cos θ)
0.75 = tan θ
θ ≈ 36.9°
Next, use Pythagorean theorem to find v₀.
v₀² = (v₀ cos θ)² + (v₀ sin θ)²
v₀² = 20² + 15²
v₀ = 25 m/s