230k views
3 votes
Three forces act on an object. Two of the forces are at an angle of 95◦ to each other and have magnitudes 35 N and 7 N. The third force is perpendicular to the plane of these two forces and has magnitude 9 N. Calculate the magnitude of the force that would exactly counterbalance these three forces. Round your answer to one decimal place.

1 Answer

3 votes

We want to find
\vec F_4 such that the object needs is in equilibrium:


\vec F_1+\vec F_2+\vec F_3+\vec F_4=\vec0

We're told that
F_1=35\,\mathrm N,
F_2=7\,\mathrm N, and
F_3=9\,\mathrm N. We also know the angle between
\vec F_1 and
\vec F_2 is 95º, which means


\vec F_1\cdot\vec F_2=F_1F_2\cos95^\circ=245\cos95^\circ


\vec F_3 is perpendicular to both
\vec F_1 and
\vec F_2, so
\vec F_1\cdot\vec F_3=\vec F_2\cdot\vec F_3=0.

If we take the dot product of
\vec F_1 with the sum of all four vectors, we get


\vec F_1\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0


\vec F_1\cdot\vec F_1+\vec F_1\cdot\vec F_2+\vec F_1\cdot\vec F_3+\vec F_1\cdot\vec F_4=0


{F_1}^2+\vec F_1\cdot\vec F_2+0+\vec F_1\cdot\vec F_4=0


\implies\vec F_1\cdot\vec F_4=-\left({F_1}^2+\vec F_1\cdot\vec F_2\right)

We can do the same thing with
\vec F_2 and
\vec F_3:


\vec F_2\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0


\implies\vec F_2\cdot\vec F_4=-\left(\vec F_1\cdot\vec F_2+{F_2}^2\right)


\vec F_3\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0


\implies\vec F_3\cdot\vec F_4=-{F_3}^2

Finally, if we do this with
\vec F_4, we get


\vec F_4\cdot(\vec F_1+\vec F_2+\vec F_3+\vec F_4)=0


\implies{F_4}^2=-\left(\vec F_1\cdot\vec F_4+\vec F_2\cdot\vec F_4+\vec F_3\cdot\vec F_4\right)


\implies{F_4}^2=-\left(-\left({F_1}^2+\vec F_1\cdot\vec F_2\right)-\left(\vec F_1\cdot\vec F_2+{F_2}^2\right)-{F_3}^2\right)


\implies F_4=\sqrt{{F_1}^2+{F_2}^2+{F_3}^2+2(\vec F_1\cdot\vec F_2)}


\implies\boxed{F_4\approx36.2\,\mathrm N}

User MoPo
by
5.0k points