Answer:
See explanation
Step-by-step explanation:
You are given the equation of the curve
![y=(x)/(1+x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ishy40bnizaiswpnw1oprj7o9ii1bv0hbp.png)
Point
lies on the curve.
Point
is an arbitrary point on the curve.
The slope of the secant line PQ is
![(y_2-y_1)/(x_2-x_1)=((x)/(1+x)-(1)/(2))/(x-1)=((2x-(1+x))/(2(x+1)))/(x-1)=((2x-1-x)/(2(x+1)))/(x-1)=\\ \\=((x-1)/(2(x+1)))/(x-1)=(x-1)/(2(x+1))\cdot (1)/(x-1)=(1)/(2(x+1))\ [\text{When}\ x\\eq 1]](https://img.qammunity.org/2020/formulas/mathematics/high-school/uwt84o2sxdjikp6m2qlq0f0ex824a5k2s7.png)
1. If x=0.5, then the slope is
![(1)/(2(0.5+1))=(1)/(3)\approx 0.3333](https://img.qammunity.org/2020/formulas/mathematics/high-school/uval3n6g8fh0m8iky8g8jvt7muq07trgg8.png)
2. If x=0.9, then the slope is
![(1)/(2(0.9+1))=(1)/(3.8)\approx 0.2632](https://img.qammunity.org/2020/formulas/mathematics/high-school/dc8qxnzr4pwomlsmd8tqmbn7crx4rtx3gu.png)
3. If x=0.99, then the slope is
![(1)/(2(0.99+1))=(1)/(3.98)\approx 0.2513](https://img.qammunity.org/2020/formulas/mathematics/high-school/vm6pc24zobl238qckt90yq6ce1m5cfdj6u.png)
4. If x=0.999, then the slope is
![(1)/(2(0.999+1))=(1)/(3.998)\approx 0.2501](https://img.qammunity.org/2020/formulas/mathematics/high-school/5j2if5wqhvj8y3wsxvpuft999ypglblqmf.png)
5. If x=1.5, then the slope is
![(1)/(2(1.5+1))=(1)/(5)\approx 0.2](https://img.qammunity.org/2020/formulas/mathematics/high-school/6z85f1fuv45ce8f9gdpw6pdprecpelvw61.png)
6. If x=1.1, then the slope is
![(1)/(2(1.1+1))=(1)/(4.2)\approx 0.2381](https://img.qammunity.org/2020/formulas/mathematics/high-school/r1bkeggg4lbkzr2xldxttj5nknakjoqnnt.png)
7. If x=1.01, then the slope is
![(1)/(2(1.01+1))=(1)/(4.02)\approx 0.2488](https://img.qammunity.org/2020/formulas/mathematics/high-school/n8e1m1dvf794ko23hbac9runmpsv1qlmk6.png)
8. If x=1.001, then the slope is
![(1)/(2(1.001+1))=(1)/(4.002)\approx 0.2499](https://img.qammunity.org/2020/formulas/mathematics/high-school/djen7m6c08lg4sreetdgkocy7penihc17u.png)