Answer: 0.1356661
Explanation:
Let p be the population proportion.
By the given information, we have
Null Hypothesis:
![H_0: p=0.06](https://img.qammunity.org/2020/formulas/mathematics/high-school/ycd4nur5txqxcnzwa24o72wqpsm5k1rmq9.png)
Alternative Hypothesis :
![H_1: p>0.06](https://img.qammunity.org/2020/formulas/mathematics/high-school/c9xsadb3n44di1qi7rajccnqcoxui28ee9.png)
Since , the alternative hypothesis is right-tailed , then the test is a right -tailed test.
Given : Sample size : n= 190
Number of customers stated their preference for mint chocolate chip : 15
The , the sample proportion :
![\hat{p}=(15)/(190)\approx0.079](https://img.qammunity.org/2020/formulas/mathematics/high-school/fe0t6l6raki6034r52i1iv4hmh9ef2xru6.png)
Test statistic for proportion:
![z=\frac{\hat{p}-p}{\sqrt{(p(1-p))/(n)}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/qbe8s3uzi3o97g9woow5ls56mxv9q4kc05.png)
i.e
![z=\frac{0.079-0.06}{\sqrt{(0.06\cdot0.94)/(190)}}\approx1.10](https://img.qammunity.org/2020/formulas/mathematics/high-school/wkvw00pln9prqz1fiyyh0c5wt8x3ey81rg.png)
By using the standard normal distribution table for z-score , we have
P-value for right tailed test :
![P(Z>z)=1-P(Z<z)](https://img.qammunity.org/2020/formulas/mathematics/college/168jp9lj0en22aql22l0saih71a14fknxw.png)
i.e.
![P(Z>1.10)=1-P(Z<1.10)=1-0.8643339=0.1356661](https://img.qammunity.org/2020/formulas/mathematics/high-school/klx37d3bxf15h25mwrdqqu4ki4o1gp1agi.png)