Answer:
Perimeter of ABCD = 44.
Explanation:
If Figure ABCD is a parallelogram, then its opposite sides are equal in length.
Perimeter of parallelogram ABCD = 2 ( sum of its adjacent sides)
Now since ABCD is a parallelogram then, AB = CD and BC = AD.
Given:
![AB = 4y-2, BC = 2x + 2, CD = 2y + 6 and AD = 3x-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ft1v16385p35vte9zl6ww68k23lpqfvehn.png)
Now since
![AB = CD\ \ therefore,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qdj33as292co8owl6h4vznf8i2004370nd.png)
![4y-2 = 2y + 6\\4y - 2y = 6 + 2\\2y = 8\\y = 4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rnuz0dj1vnvfttiw9q4cawrbq8e683y0z2.png)
In the same way,
![BC = AD, therefore](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p9ms1y2ez13hvry549zwceyx0nwm1gtfys.png)
![2x+2 = 3x -1 \\3x-2x=2+1\\x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/265991adi2rufgar1nsrihbu0q6jbyf9vy.png)
Now perimeter of ABCD =
![2(AB + BC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wut1vqp5ry53r6105fyckewep3xmv1kgyd.png)
=
![2( 4y-2 +2x+2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1f5nvli1w9citjv1qj9c4t3shiscql9yyn.png)
=
![2(4y+2x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k3uhlz39oqb35o4grxqelg8jdb5zdblm65.png)
Now by substituting the values of x and y in above expression,
![2(4y+2x) \\2\left (4(4)+2(3) \right )\\2(16+6) =2(22) = 44](https://img.qammunity.org/2020/formulas/mathematics/middle-school/32oy083lm4g8ayxsdpowppnun1grvnyfpq.png)