Answer: The age of the tool is
![1.12* 10^4years](https://img.qammunity.org/2020/formulas/chemistry/college/4meeftoaobwpel99dwsdn8xy5bufeixp0q.png)
Step-by-step explanation:
Half-life of carbon-14 = 5730 years
First we have to calculate the rate constant, we use the formula :
![k=\frac{0.693}{5730\text{years}}](https://img.qammunity.org/2020/formulas/chemistry/college/i8m41jyuhsrp7e1qsa572dv06m5p8x65pq.png)
![k=1.21* 10^(-4)\text{years}^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/b29b99rhd1jwa4h8hj5pp7yi0lzwncnzk8.png)
Now we have to calculate the age of the tool:
Expression for rate law for first order kinetics is given by:
![t=(2.303)/(k)\log(a)/(a-x)](https://img.qammunity.org/2020/formulas/biology/high-school/7uzl3cikjp9fopr9b7dsrhhhv4nlslm80x.png)
where,
k = rate constant =
![1.21* 10^(-4)\text{years}^(-1)](https://img.qammunity.org/2020/formulas/chemistry/college/iznrbid9fsnfmw0rhv3se66d5lnmymiod7.png)
t = age of sample = ?
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process =
Now put all the given values in above equation, we get
![t==(2.303)/(1.21* 10^(-4))\log(100)/(25.7)](https://img.qammunity.org/2020/formulas/chemistry/college/hf8tqugjfcr95hose2otzvdof2vrv6cfml.png)
![t=1.12* 10^4years](https://img.qammunity.org/2020/formulas/chemistry/college/cpabgos57a6wbcmz91pkmtp6r6u7fxe0ti.png)
Thus the age of the tool is
![1.12* 10^4years](https://img.qammunity.org/2020/formulas/chemistry/college/4meeftoaobwpel99dwsdn8xy5bufeixp0q.png)