4.1k views
2 votes
Simplify. Assume no variable is 0.

#16-23 please

85 points!!!!! This is the jumbo pack!!!!

Simplify. Assume no variable is 0. #16-23 please 85 points!!!!! This is the jumbo-example-1
User Mamu
by
5.6k points

2 Answers

1 vote

Answer:

Q16

First, we multiply the variable x together:

and remove brackets:

Now, we multiply the variable y:

Hence:

Use the rule

Thus,

Multiply:

Q17

Multiply the variable b together:

Multiply the variable c together:

Multiply.

Q18:

Divide the numerator and denominator by a:

Apply the rule that

Hence, the equation will be

which is finally

Q19:

Do the same rule said above:

Do the rule again:

Q20:

Cancel the common factor of 7:

Thus,

Cancel common factor of y^5

Q21:

Cancel the common factor which is 9:

"Move" the variable a up using the rule:

"Move" the variable b down using the rule:

"Move" the variable c up using the rule

Q22:

Use the rule:

Hence,

Q23:

Using the same rule above,

Therefore,

you get your answer.

User Marco Lazzeri
by
5.2k points
6 votes

Explanation:

Q16


( {5x}^(3) {y}^( - 5) )( {4xy}^(3) )

First, we multiply the variable x together:


{x}^(3) * x = {x}^(4)

and remove brackets:


{5y}^( - 5) * {4x}^(4) * {y}^(3)

Now, we multiply the variable y:


{y}^( - 5) * {y}^(3) = {y}^( - 2)

Hence:


5 * 4 {x}^(4) * {y}^( - 2)

Use the rule


{x}^( - y) = \frac{1}{ {x}^(y) }

Thus,


5 * 4 {x}^(4) * \frac{1}{ {y}^(2) }

Multiply:


\frac{20 {x}^(4) }{ {y}^(2) }

Q17


( - 2 {b}^(3) c)(4 {b}^(2) {c}^(2) )


- 2 {b}^(3) c* 4 {b}^(2) {c}^(2)

Multiply the variable b together:


- 2c * 4 {b}^(5) {c}^(2)

Multiply the variable c together:


- 2 * 4 {b}^(5) {c}^(3)

Multiply.


- 8 {b}^(5) {c}^(3)

Q18:


\frac{ {a}^(3) {n}^(7) }{a {n}^(4) }

Divide the numerator and denominator by a:


\frac{ {a}^(2) {n}^(7) }{ {n}^(4) }

Apply the rule that


\frac{ {x}^(y) }{ {x}^(z) } = {x}^(y - z)

Hence, the equation will be


{a}^(2) {n}^(7 - 4)

which is finally


{a}^(2) {n}^(3)

Q19:


\frac{ - {y}^(3) {z}^(5) }{ {y}^(2) {z}^(3) }

Do the same rule said above:


- \frac{ {z}^(5) {y}^(3 - 2) }{ {z}^(3) }


- \frac{y {z}^(5) }{ {z}^(3) }

Do the rule again:


- y {z}^(5 - 3)


- y {z}^(2)

Q20:


\frac{ - 7 {x}^(5) {y}^(5) {z}^(4) }{21 {x}^(7) {y}^(5) {z}^(2) }

Cancel the common factor of 7:


- \frac{ {x}^(5) {y}^(5) {z}^(4) }{3 {x}^(7) {y}^(5) {z}^(2) }


- \frac{ {y}^(5) {z}^(4) }{3 {y}^(5) {z}^(2) {x}^(7 - 5) }

Thus,


- \frac{ {y}^(5) {z}^(4) }{3 {y}^(5) {z}^(2) {x}^(2) }

Cancel common factor of y^5


- \frac{ {z}^(4) }{3 {z}^(2) {x}^(2) }


- \frac{ {z}^(4 - 2) }{3 {x}^(2) }


- \frac{ {z}^(2) }{3 {x}^(2) }

Q21:


\frac{9 {a}^(7) {b}^(5) {c}^(5) }{18 {a}^(5) {b}^(9) {c}^(3) }

Cancel the common factor which is 9:


\frac{{a}^(7) {b}^(5) {c}^(5) }{2 {a}^(5) {b}^(9) {c}^(3) }

"Move" the variable a up using the rule:


\frac{{a}^(7 - 5) {b}^(5) {c}^(5) }{2 {b}^(9) {c}^(3) }


\frac{{a}^(2) {b}^(5) {c}^(5) }{2 {b}^(9) {c}^(3) }

"Move" the variable b down using the rule:


\frac{{a}^(2) {c}^(5) }{2 {c}^(3) {b}^(9 - 5) }


\frac{{a}^(2) {c}^(5) }{2 {c}^(3) {b}^(4) }

"Move" the variable c up using the rule


\frac{{a}^(2) {c}^(5 - 3) }{2 {b}^(4) }


\frac{{a}^(2) {c}^(2) }{2 {b}^(4) }

Q22:


( {n}^(5) {)}^(4)

Use the rule:


({x}^(y) {)}^(z) = {x}^(yz)

Hence,


{n}^(5 * 4)


{n}^(20)

Q23:


( {z}^(3) {)}^(6)

Using the same rule above,


{z}^(3 * 6)

Therefore,


{z}^(18)

User Kyle Fransham
by
5.5k points