Answer:
43.33 cm/s
Step-by-step explanation:
Assume:
- u = initial speed of the particle
- v = final speed of the particle
- a = constant acceleration of the particle
- t = time interval for the acceleration
- s = distance traveled in the straight time
= average speed of the particle over the entire time interval
Case I
u = 40 cm/s
v = 20 cm/s
t = 5.0 s
Let us first calculate the acceleration of the particle in this time interval.

Now, using the formula of displacement, we have

Since the particle does not change its direction during this time interval and it moves in a straight line. So, the displacement of the particle is equal to the distance traveled. This means the distance traveled by the particle in this time interval is 150 cm.
Case II

So, in this part, the distance traveled by the particle is 240 cm.
We know,

Hence, the average speed of the particle in the entire time interval is 43.33 cm/s.