137k views
4 votes
3. Find the perimeter of quadrilateral ABCD with vortices 4(-2,-2), B(-1,3),

c(5, 3), and D(4, -2).

1 Answer

3 votes

Answer:


12 + 2 √(26)

Explanation:

To find the perimeter of quadrilateral we need to calculate the length of its four sides which is distance between its four vertices.

where
A(x_(1), y_(1)) = (-2, -2),


B(x_(2), y_(2)) = (-1, 3)


C(x_(3), y_(3)) = (5, 3)


D(x_(4), y_(4)) = (4, -2)

Distance of AB =
\sqrt{\left (x^{_(2)}-x^{_(1)} \right )^(2)+\left (y_(2)-y_(1) \right )^(2)}

=
\sqrt{\left (-1+ 2 \right )^(2)+ (3 + 2)^{^(2)}}

=
\sqrt{1^{^(2)}+5^{^(2)}}

=
√(26)

Distance of BC =
\sqrt{\left (x_(3)-x_(2) \right )^(2)+ \left (y_(3)-y_(2)\right )^(2)}

=
\sqrt{(5+1)^(2)+ (3-3)^(2)} = √(36) = 6

Distance of CD =
\sqrt{\left (x_(4)-x_(3) \right )^(2)+ \left (y_(4)-y_(3)\right )^(2)

=
\sqrt{(4-5)^{^(2)}+(-2-3)^{^(2)}} = √(1 + 25) =√(26)

Distance of AD =
\sqrt{\left (x_(4)-x_(1) \right )^(2)+ \left (y_(4)-y_(1) \right )^(2)

=
\sqrt{(4 + 2)^{_(2)}+ (-2 + 2)^{^(2)}}=√(36 + 0) = 6

Perimeter of quadrilateral ABCD = Dist. ( AB + BC + CD + AD)

=
√(26) +6 +√(26) +6

=
12 +2 √(26)

User GgnDpSingh
by
7.9k points