Answer:
It will take
years.
Step-by-step explanation:
Plutonium 239 has a half life of
years.
We know, for radioactive decay, that the quantity of radioactive material N at time t can be obtained with the equation
![N(t) = N_0 \ ((1)/(2))^{\frac{t}{t_{(1)/(2)}}}](https://img.qammunity.org/2020/formulas/physics/college/ind7rnthg3ivzps8q4sftxyesqz23t9554.png)
where
is the initial quantity of radioactive material and
is the half life of the material.
Taking the values of our problem:
![N(t') = 2.5 \ g = 20 \ g \* ((1)/(2))^{\frac{t'}{t_{(1)/(2)}}}](https://img.qammunity.org/2020/formulas/physics/college/z8qc13znbnewgtsnx6639c4ra40nlqfbog.png)
![(2.5 \ g)/(20 \ g) = \ ((1)/(2))^{\frac{t'}{t_{(1)/(2)}}}](https://img.qammunity.org/2020/formulas/physics/college/txnhwyu27tlz3jelwy85lwkmbn4eedu4qg.png)
![log( 0.125) = log(((1)/(2))^{\frac{t'}{t_{(1)/(2)}}} )](https://img.qammunity.org/2020/formulas/physics/college/a083oy7tpmr6cag0qytrso0lxj0rnuatoz.png)
![log( 0.125) = {\frac{t'}{t_{(1)/(2)}}} * log(((1)/(2)) )](https://img.qammunity.org/2020/formulas/physics/college/7e5qdy27dp2mzhki8o5z7u6cde28dl3t4r.png)
![(log( 0.125))/(log((1)/(2))) = \frac{t'}{t_{(1)/(2)}}}](https://img.qammunity.org/2020/formulas/physics/college/pzhdz7qakrpr1z6h1mtxw3k5qj520jzhbr.png)
![t_{ (1)/(2) } (log( 0.125))/(log((1)/(2))) = t'](https://img.qammunity.org/2020/formulas/physics/college/sht642rp21s6yf5zkm952t5yp6ies0zb9v.png)
![2.41 \ 10^4 \years\ * 3 = t'](https://img.qammunity.org/2020/formulas/physics/college/xs3z80it0ds0gtet0wb7hijlncfb4cfcps.png)
![7.23 \ 10^4 \years\ = t'](https://img.qammunity.org/2020/formulas/physics/college/p506uf7kp507zp5yfzsz3szumb9rjwiyee.png)