182k views
4 votes
Please Help! I'm stuck on this question. Show all work!

An airplane undergoes the following displacements: First, it flies 72 km in a direction 30° east of north. Next, it flies 48 km due south. Finally, it flies 100 km 30° north of west. Using analytical methods, determine how far the airplane ends up from its starting point.

User Yang Zhao
by
5.6k points

1 Answer

7 votes

Add all the displacement vectors together, then find the magnitude of this vector sum.


\vec r_1=(72\,\mathrm{km})(\cos60^\circ\,\vec\imath+\sin60^\circ\,\vec\jmath)


\vec r_2=(48\,\mathrm{km})(\cos270^\circ\,\vec\imath+\sin270^\circ\,\vec\jmath)


\vec r_3=(100\,\mathrm{km})(\cos150^\circ\,\vec\imath+\sin150^\circ\,vec\jmath)

Summing these vectors gives the resultant displacement


\vec r=\vec r_1+\vec r_2+\vec r_3\approx(-50.6\,\vec\imath+64.4\,\vec\jmath)\,\mathrm{km}

and we have


\|\vec r\|=√((-50.6)^2+64.4^2)\,\mathrm{km}\approx\boxed{81.9\,\mathrm{km}}

so the plane ends up about 81.9 km away from its starting position.

User Daja
by
4.8k points