4.6k views
0 votes
The acceleration of a particle traveling along the x axis is given by a(t) = −bt, where b = 7.39 m/s3. In addition, we know that at t = 0, the particle is at the position x0 = 5.00 m and has a velocity of v0 = 10.0 m/s. At the time t = 5.00 s, determine the following for this particle. (Indicate the direction with the sign of your answer.)

1 Answer

7 votes

Answer:

Acceleration of the particle=
-36.95 \mathrm{m} / \mathrm{sec}^(2)

Velocity of the particle=
-82.375 \mathrm{m} / \mathrm{sec}

position of the particle=
98.985 \mathrm{m} / \mathrm{sec}

Step-by-step explanation:

Given:


b=7.39 \mathrm{m} / \mathrm{s}^(3)

t = 0


X_(0)=5.00 \mathrm{m}


V_(0)=10.0 \mathrm{m} / \mathrm{s}


X_(0)=5.00 \mathrm{m}


V_(0)=10.0 \mathrm{m} / \mathrm{s}

To find:

The acceleration of particle at t= 5,00 s

Velocity of the particle at t= 5,00 s

Postion of the particle at t= 5,00 s

Solution:

Finding the value of a:


v(t)=\int a(t) . b(t)=\left((-b t^(2))/(2)+a\right) m / s e c


\left((-7.39 t^(2))/(2)+a\right)_(0)=10


\left((-b t^(2)+2 a)/(2)\right)_(0)=10


\left(-b t^(2)+2 a\right)_(0)=2(10)


\left(-b t^(2)+2 a\right)_(0)=20


\left(-b(0)^(2)+2 a\right)=2(10)


2 a=20


a=10

Finding the value of c


x(t)=\int v(t) \cdot d(t)=\left((-b t^(3))/(6)+a t+c\right) m / s e c


\left((-b t^(3))/(6)+a t+c\right)_(0)=5

Substituting t=0


\left((-b(0)^(3))/(6)+a(0)+c\right)=5

c=5

Finding the velocity of of particle at t=5


v(t)=\int a(t) . b(t)=\left((-b t^(2))/(2)+a\right) m / s e c


v(5)=\left((-(7.39)(5)^(2))/(2)+10\right)


v(5)=\left((-(7.39)(25))/(2)+10\right)


v(5)=\left((-(184.75))/(2)+10\right)


v(5)=\left((-(184.75))/(2)+10\right)


v(5)=(-92.375+10)


v(5)=(-82.375)

Position of the particle at x=5


x(t)=\int v(t) \cdot d(t)=\left((-b t^(3))/(6)+a t+c\right) m


x(5)=\left((-(7.39)(5)^(3))/(6)+(10)(5)+5\right)


x(5)=\left((-(7.39)(25))/(6)+(50)+5\right)


x(5)=\left((-(923.75))/(6)+(50)+5\right)


x(5)=(-153.958+(50)+5)


x(5)=(-153.958+(55)


x(5)=98.985 \mathrm{m}

The acceleration of the particle t=5


a(t)=-b t


a(5)=-(7.39)(5)


a(5)=-36.95 \mathrm{m} / \mathrm{sec}^(2)

User Nwinkler
by
8.8k points