Answer:
- The diameter of the molecule of oil is
![1.405 10 ^(-9) \ m](https://img.qammunity.org/2020/formulas/physics/college/jlv9rb0ojo2z2lye5fenps2ge04vr6xonf.png)
Step-by-step explanation:
We define density as
![\rho = (mass)/(volume)](https://img.qammunity.org/2020/formulas/physics/high-school/cdze4l4fxrjqv6ygf2m5ex4cafz7le48v3.png)
So, the volume for our oil will be
![volume = (mass)/(\rho)](https://img.qammunity.org/2020/formulas/physics/college/sjb8ay359htkh25bw1jsymhdsiv79rzjte.png)
![volume = (7.62 \ 10^(-7) \ kg)/( 912 \ (kg)/(m^3) )](https://img.qammunity.org/2020/formulas/physics/college/j3virc2w8h5y4m5s0v09rv565wtqlfsgsa.png)
![volume = (7.62 \ 10^(-7) \ kg)/( 912 \ (kg)/(m^3) )](https://img.qammunity.org/2020/formulas/physics/college/j3virc2w8h5y4m5s0v09rv565wtqlfsgsa.png)
![volume = 8.355 \ 10 ^(-10) \ m^3](https://img.qammunity.org/2020/formulas/physics/college/q03xgbmq6xu5ujsj34jlxmygszo768ckfm.png)
the volume for a cylinder with radius r and height h is
![volume = \pi r^2 h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q6nn1cvabeteyh0b2cw6txf0obpj8o06e1.png)
So, we can obtain the height of the droplet of oil as:
![h = (volume)/(\pi r^2)](https://img.qammunity.org/2020/formulas/physics/college/ogx78nwirfiv5z0b5avrh7r35k25uej203.png)
the radius is
![r=43.5 \ cm = 0.435 \ m](https://img.qammunity.org/2020/formulas/physics/college/8ed50vepmeg2uhasqrf08c6rtbxbmmwuwn.png)
![h = 1.405 10 ^(-9) \ m^3](https://img.qammunity.org/2020/formulas/physics/college/7iygmqoo3zve1fc6wbjon6xf8jgr91v082.png)
And this is the diameter of the oil molecule.