Answer:
A:
![777.6\ N.](https://img.qammunity.org/2020/formulas/physics/college/rjoivyjqk40iqc3xlp3q83ear7a3hx7n6n.png)
B:
![\rm 4.656* 10^(29)\ m/s^2.](https://img.qammunity.org/2020/formulas/physics/college/wum8n2pgpbg9xmtz1jrkymopiyutehn0op.png)
Step-by-step explanation:
Given:
- Charge on the 125 Xe nucleus,
![\rm q = +54e.](https://img.qammunity.org/2020/formulas/physics/college/hx064fzxz59zbf6hs94d63uc5wmuj6n9by.png)
- Diameter of the 125 Xe nucleus,
![\rm d=6.0\ fm = 6.0* 10^(-15)\ m.](https://img.qammunity.org/2020/formulas/physics/college/lklofd1pitxgo95jwfbbuao0vinz4xcu5z.png)
- Distance of the proton from the surface of the nucleus,
![\rm a=1.0\ fm = 1.0* 10^(-15)\ m.](https://img.qammunity.org/2020/formulas/physics/college/5c0c1wwe2hcmwkpmf2zom21rfaoj5phzsv.png)
Part A:
Coulomb's law states that the electric field due to a charged sphere of charge Q at a point r distance away from its center is given by
![\rm E=(kQ)/(r^2).](https://img.qammunity.org/2020/formulas/physics/college/pccnaknq0qk1zvr4q51lhgwkh2kcj9l41m.png)
where, k = Coulomb's constant whose value =
![9* 10^9\ \rm Nm^2/C^2.](https://img.qammunity.org/2020/formulas/physics/college/iqw2f3wctxhsvxx3kbgbbzdmpu21h47f51.png)
Therefore, the electric field due to the nucleus at the proton is given by
![\rm E=(kq)/(r^2)=((9* 10^9)* (+54 e))/(r^2)](https://img.qammunity.org/2020/formulas/physics/college/7i4fr28a35sxmh4zy3u7p6ke64h3iuvk1i.png)
= elementary charge, having value = \rm 1.6\times 10^{-19}\ C.
= distance of the proton from the center of the nucleus =
![\rm a+\text{Radius of the nucleus}= a + \frac d2 = 1.0+\frac{6.0}2=4.0\ fm = 4.0* 10^(-15)\ m.](https://img.qammunity.org/2020/formulas/physics/college/5yjuc72jnxhkk7lwe39p4djoebdrxpqbk4.png)
Therefore,
![\rm E=((9* 10^9)* (+54 * 1.6* 10^(-19)))/((4.0* 10^(-15))^2)=4.86* 10^(21)\ N/C.](https://img.qammunity.org/2020/formulas/physics/college/ouyh90npp7ufzrn2qsctrul2tasjqbdpii.png)
The electric force on a charge q due to an electric field is given as
![\rm F=qE](https://img.qammunity.org/2020/formulas/physics/college/6ivu6fff5q7zx0l4nyqjigqjsqhlol6vw0.png)
For the proton,
![\rm q = e =1.6* 10^(-19)\ C.](https://img.qammunity.org/2020/formulas/physics/college/11tlpa1nyprq0bpq94xr0y2i9mvayy68qa.png)
Thus, the electric force on the proton is given by
![\rm F = 1.6* 10^(-19)* 4.86* 10^(21)=777.6\ N.](https://img.qammunity.org/2020/formulas/physics/college/k1qp2gwed8bio0m483syh611f86quq0fg7.png)
Part B:
According to Newton's second law,
![\rm F=ma](https://img.qammunity.org/2020/formulas/physics/college/kj1lih5mk4c7ng66n7u3n92k1tqtyn0qzk.png)
where, a is the acceleration.
The mass of the proton is
![\rm m_p=1.67* 10^(-27)\ kg.](https://img.qammunity.org/2020/formulas/physics/college/qbk1r8bodxunpz8ioueknb6x7ci7wposcd.png)
Therefore, the proton's acceleration is given by
![\rm a = (F)/(m_p)=(777.6)/(1.67* 10^(-27))=4.656* 10^(29)\ m/s^2.](https://img.qammunity.org/2020/formulas/physics/college/judnxc7u11hvt14cqqqa0ycmfx465rgcd4.png)