Answer:
819.78 m
Step-by-step explanation:
Given:
- OA = range of initial position of the airplane from the point of observation = 375 m
- OB = range of the final position of the airplane from the point of observation = 797 m
= angle of the initial position vector from the observation point =
![43^\circ](https://img.qammunity.org/2020/formulas/physics/college/6et3gfiyk4o0d1c9gadxqmd3bp5c08fxpt.png)
= angle of the final position vector from the observation point =
![123^\circ](https://img.qammunity.org/2020/formulas/physics/college/2n38u6asdb2lvylivobwfnhzhwjhswhzo1.png)
= displacement vector from initial position to the final position
A diagram has been attached with the solution in order to clearly show the position of the plane.
![\vec{OA} = OA\cos \theta \hat{i}+OA \sin \theta \hat{j}\\\Rightarrow \vec{OA} = 375\ m\cos 43^\circ \hat{i}+375\ m\sin 43^\circ \hat{j}\\\Rightarrow \vec{OA} = (274.26\ \hat{i}+255.75\ \hat{j})\ m\\\vec{OB} = OB\cos \alpha \hat{i}+OB \sin \alpha \hat{j}\\\Rightarrow \vec{OB} = 797\ m\cos 123^\circ \hat{i}+797\ m\sin 123^\circ \hat{j}\\\Rightarrow \vec{OB} = (-434.08\ \hat{i}+668.42\ \hat{j})\ m](https://img.qammunity.org/2020/formulas/physics/college/ukm0cyckl67smkb5nhvuujcxcb38t4nmif.png)
Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:
![\vec{AB}=\vec{OB}-\vec{OA}\\\Rightarrow \vec{AB} = (-434.08\ \hat{i}+668.42\ \hat{j})\ m-(274.26\ \hat{i}+255.75\ \hat{j})\ m\\\Rightarrow \vec{AB} = (-708.34\ \hat{i}+412.67\ \hat{j})\ m](https://img.qammunity.org/2020/formulas/physics/college/2iaqbmi06j9ya2c3wyxvlubjxv2w4yp3to.png)
The magnitude of the displacement vector =
![√((-708.34)^2+(412.67)^2)\ m = 819.78\ m](https://img.qammunity.org/2020/formulas/physics/college/8n5n6lijtjyjvyri514drta8n7ax55ty63.png)
Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.