187k views
1 vote
Tan x + tan(x +pi/4) = 1.
help me fine x ..​

User Gsc
by
4.7k points

1 Answer

2 votes

Recall that


\tan(x+y)=(\tan x+\tan y)/(1-\tan x\tan y)

and that
\tan\frac\pi4=1. So we have


\tan x+\tan\left(x+\frac\pi4\right)=1


\implies\tan x+(\tan x+\tan\frac\pi4)/(1-\tan x\tan\frac\pi4)=1


\implies\tan x+(\tan x+1)/(1-\tan x)=1


\implies(\tan x(1-\tan x)+\tan x+1)/(1-\tan x)=1


\implies(1+2\tan x-\tan^2x)/(1-\tan x)=1

As long as
\tan x\\eq1, we can write


\implies1+2\tan x-\tan^2x=1-\tan x


\implies3\tan x-\tan^2x=0


\implies\tan x(3-\tan x)=0


\implies\tan x=0\text{ or }\tan x=3


\implies\boxed{x=n\pi\text{ or }x=\tan^(-1)3+n\pi}

where
n is any integer.

User Wolfone
by
4.8k points