Answer:
1) d
2) 5 m/s
3) 100
Step-by-step explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i)
![x=(1)/(2)at^2+v_0t+x_0](https://img.qammunity.org/2020/formulas/physics/middle-school/by5c549s6l30bq9saqul49jx8nk05nnbt7.png)
The equation for velocity v and a constant acceleration a is:
(ii)
![v=at+v_0](https://img.qammunity.org/2020/formulas/physics/middle-school/91wyyeii5mtzp6tt7pcb9f7t51pfrlozqo.png)
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii)
![a = (v -v_0)/(t)](https://img.qammunity.org/2020/formulas/physics/middle-school/3ekwu7tsfgx73f0bko48gka7ufkmkszs9v.png)
(iv)
![x = (v-v_0)/(2t)t^2+v_0t + x_0](https://img.qammunity.org/2020/formulas/physics/middle-school/pk41u4wko6hnyk5nhrdjtf76y8e8oa7n4o.png)
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v)
![x=-(v_0)/(2)t + v_0t= (v_0)/(2)t](https://img.qammunity.org/2020/formulas/physics/middle-school/rgiq9a1i60htc3dohzw0kin9uu1fbgmjiw.png)
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
![v=at+v_0=0.2(m)/(s^2) * 10s+3(m)/(s)=2(m)/(s)+3(m)/(s)=5(m)/(s)](https://img.qammunity.org/2020/formulas/physics/middle-school/w0fhj6tzlwoa2tgbx6xqcxg9qspt02j05n.png)
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):
![f=(x(t_1))/(x(t_2))=((1)/(2)at_1^2 )/((1)/(2)at_2^2)=(t_1^2)/(t_2^2)=(10^2)/(1^2)=(100)/(1)](https://img.qammunity.org/2020/formulas/physics/middle-school/qah7ajikeirsih33dfcqruzvb38wl21cp0.png)