Answer:0.0869 %
Step-by-step explanation:
Given
probability of getting success is 50 % i.e. 0.5
So probability of missing the throw is 0.5
For 20 shots probability that he can score five baskets
Using Binomial distribution
![^nC_r=(n!)/(\left ( n-r\right )!\left ( r\right )!)](https://img.qammunity.org/2020/formulas/social-studies/high-school/rcuj70w4f6xwc98sqpe3dyoed4zgqs3r7c.png)
here n=20
p=0.5 (Probability of winning)
q=0.5 (Probability of loosing)
for r=5
![^20C_5\left ( 0.5\right )^5\left ( 0.5\right )^(15)=(20!)/(\left ( 20-5\right )!\left ( 5\right )!)* \left ( 0.5\right )^5\left ( 0.5\right )^(15)](https://img.qammunity.org/2020/formulas/social-studies/high-school/x1o6rc7fd7krzdmetg27jf1rqxiq6d005n.png)
![=19* 6* 4* 2* 0.5^20=0.0008697](https://img.qammunity.org/2020/formulas/social-studies/high-school/klcj135jgcu4t2xfnsr6hjdrgxwijex5pn.png)
i.e. 0.0869 %