103,643 views
28 votes
28 votes
Divide (3x^4- 2x + 1) by (x² +2)

User Adil Khalil
by
2.7k points

1 Answer

12 votes
12 votes

Answer:


3x^2-6-(2x-13)/(x^2+2)

Explanation:

As the divisor is quadratic, use long division rather than synthetic division:


\large \begin{array}{r}3x^2-6\phantom{)}\\x^2+2{\overline{\smash{\big)}\,3x^4-2x+1\phantom{)}}}\\{-~\phantom{(}\underline{(3x^4+6x^2)\phantom{-b)}}\\-6x^2-2x+1\phantom{)}\\-~\phantom{()}\underline{(-6x^2\phantom{))))}-12)\phantom{}}\\-2x+13\phantom{)}\\\end{array}

Therefore:


\textsf{Dividend}: \quad 3x^4-2x+1


\textsf{Divisor}: \quad x^2+2


\textsf{Quotient}: \quad 3x^2-6


\textsf{Remainder}: \quad -2x+13=-(2x-13)

When dividing a polynomial, the result is the quotient plus the remainder over the divisor:


\implies (3x^4-2x+1)/(x^2+2)=3x^2-6-(2x-13)/(x^2+2)

User MalphasWats
by
3.0k points