41.1k views
1 vote
Prove the following DeMorgan's laws: if LaTeX: XX, LaTeX: AA and LaTeX: BB are sets and LaTeX: \{A_i: i\in I\} {Ai:i∈I} is a family of sets, then

LaTeX: X-(A\cup B)=(X-A)\cap (X-B)

LaTeX: X-(\cup_{i\in I}A_i)=\cap_{i\in I}(X-A_i)

1 Answer

0 votes

  • X-(A\cup B)=(X-A)\cap(X-B)

I'll assume the usual definition of set difference,
X-A=\{x\in X,x\\ot\in A\}.

Let
x\in X-(A\cup B). Then
x\in X and
x\\ot\in(A\cup B). If
x\\ot\in(A\cup B), then
x\\ot\in A and
x\\ot\in B. This means
x\in X,x\\ot\in A and
x\in X,x\\ot\in B, so it follows that
x\in(X-A)\cap(X-B). Hence
X-(A\cup B)\subset(X-A)\cap(X-B).

Now let
x\in(X-A)\cap(X-B). Then
x\in X-A and
x\in X-B. By definition of set difference,
x\in X,x\\ot\in A and
x\in X,x\\ot\in B. Since
x\\ot A,x\\ot\in B, we have
x\\ot\in(A\cup B), and so
x\in X-(A\cup B). Hence
(X-A)\cap(X-B)\subset X-(A\cup B).

The two sets are subsets of one another, so they must be equal.


  • X-\left(\bigcup\limits_(i\in I)A_i\right)=\bigcap\limits_(i\in I)(X-A_i)

The proof of this is the same as above, you just have to indicate that membership, of lack thereof, holds for all indices
i\in I.

Proof of one direction for example:

Let
x\in X-\left(\bigcup\limits_(i\in I)A_i\right). Then
x\in X and
x\\ot\in\bigcup\limits_(i\in I)A_i, which in turn means
x\\ot\in A_i for all
i\in I. This means
x\in X,x\\ot\in A_(i_1), and
x\in X,x\\ot\in A_(i_2), and so on, where
\{i_1,i_2,\ldots\}\subset I, for all
i\in I. This means
x\in X-A_(i_1), and
x\in X-A_(i_2), and so on, so
x\in\bigcap\limits_(i\in I)(X-A_i). Hence
X-\left(\bigcup\limits_(i\in I)A_i\right)\subset\bigcap\limits_(i\in I)(X-A_i).

User JRodDynamite
by
8.9k points