Answer:
The solution for this system is
.
Explanation:
The Gauss-Jordan elimination method is done by transforming the system's augmented matrix into reduced row-echelon form by means of row operations.
We have the following system:
![5x + 3y = 16](https://img.qammunity.org/2020/formulas/mathematics/college/73dw51dzv7yo10rfrrtvzmkxlamcpac9ic.png)
![-2x + y = -13](https://img.qammunity.org/2020/formulas/mathematics/college/x223nhfeauy6e599duc9l9numdnabi368g.png)
This system has the following augmented matrix.
![\left[\begin{array}{ccc}5&3&16\\-2&1&-13\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/6v1tys7sg237i4xe5ntgj16vyjokq9vwdy.png)
The first step is dividing the first line by 5. So:
![L_(1) = (L_(1))/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/u9c3zuyr3bsuzbuzqn8z5tlalmncnldjd2.png)
We now have
![\left[\begin{array}{ccc}1&(3)/(5)&(16)/(5)\\-2&1&-13\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/4go8hfxsj25pz5qybi3713kk2ae3ypjpkn.png)
Now i want to reduce the first row, so I do:
![L_(2) = L_(2) + 2L_(1)](https://img.qammunity.org/2020/formulas/mathematics/college/r1filld9w32szp0r2p3newfw3br90woyg9.png)
So we have
![\left[\begin{array}{ccc}1&(3)/(5)&(16)/(5)\\0&(11)/(5)&-(33)/(5)\end{array}\right][\tex].</p><p>Now, the first step to reduce the second row is:</p><p>[tex]L_(2) = (5L_(2))/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/loba5z3bfcha5kr555athylogn8c55erdt.png)
So we have:
.
Now, to reduce the second row, we do:
![L_(1) = L_(1) - (3L_(2))/(5)](https://img.qammunity.org/2020/formulas/mathematics/college/ris3iqjjcduts8g8dwq4rbjq9mrr674feh.png)
And the augmented matrix is:
![\left[\begin{array}{ccc}1&0&5\\0&1&-3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/4bt98rehfxdap9mhptfigwr4hg2m1ibfg1.png)
The solution for this system is
.