Answer:
(a)
![L_(D) = 1.052* 10^(- 4) m](https://img.qammunity.org/2020/formulas/physics/college/pliul4lr9g6jp1lswgodpysxblplspkc59.png)
N =
![4.87* 10^(4)](https://img.qammunity.org/2020/formulas/physics/college/wrh5er7hqpt1mw9velt7vromg98le7so93.png)
(b)
![L'_(D) = 5.531* 10^(- 6) m](https://img.qammunity.org/2020/formulas/physics/college/lk47824nrthmoujvf2eubw3e0ykautu893.png)
N' =
![7.087* 10^(- 4)](https://img.qammunity.org/2020/formulas/physics/college/v0ir9x7sorzo4nxcjcv5ygc1a49ow676fk.png)
(c)
![L''_(D) = 4.43* 10^(- 13) m](https://img.qammunity.org/2020/formulas/physics/college/pve4pmmtsosx4vwpcnooxfqsph9gvaswpb.png)
N'' =
![3.63* 10^(- 14)](https://img.qammunity.org/2020/formulas/physics/college/1p4fp6he20h9jk3g3ehayatkc4bthbqnse.png)
Solution:
As per the question, we have to calculate the Debye,
length and N for the given cases.
Also, we utilize the two relations:
1.
![L_(D) = \sqrt{(KT\epsilon_(o))/(ne^(2))}](https://img.qammunity.org/2020/formulas/physics/college/mmeogoej7y81ws8c6dmim60re3ge0d2j18.png)
2. N =
![(4)/(3)n\pi(L_(D))^(3)](https://img.qammunity.org/2020/formulas/physics/college/mz1cr8k7vxz7tm3nmrb7ncyu049xw3myrg.png)
Now,
(a) n =
![10^(10) cm^(- 3)* (10^(- 2))^(- 3) = 10^(16) m^(- 3)](https://img.qammunity.org/2020/formulas/physics/college/vaw61dchwkcfs7x1ztiijpcby3iwmzc01k.png)
KT = 2 eV
Then
![L_(D) = \sqrt{(2* 1.6* 10^(- 19)* 8.85* 10^(- 12))/(10^(16)(1.6* 10^(- 19))^(2))}](https://img.qammunity.org/2020/formulas/physics/college/4ivimuhdqq8q0amoq4zzis2e4j38rt1sd0.png)
(Since,
e =
![1.6* 10^(- 19) C](https://img.qammunity.org/2020/formulas/physics/college/nz7vf6s6vwkta645tsii17sl926hlmx2mi.png)
)
Thus
![L_(D) = 1.052* 10^(- 4) m](https://img.qammunity.org/2020/formulas/physics/college/pliul4lr9g6jp1lswgodpysxblplspkc59.png)
Now,
N =
![(4)/(3)* 10^(16)\pi(1.052* 10^(- 4))^(3) = 4.87* 10^(4)](https://img.qammunity.org/2020/formulas/physics/college/5sobu9m09b0tlvf58k9xx9nibu7r81htfc.png)
(b) n =
![10^(6) cm^(- 3)* (10^(- 2))^(- 3) = 10^(12) m^(- 3)](https://img.qammunity.org/2020/formulas/physics/college/2ce4i9rvwm3fd0mh3gjmhoqdnvpy0ismf3.png)
KT = 0.1 eV
Then
![L'_(D) = \sqrt{(0.1* 1.6* 10^(- 19)* 8.85* 10^(- 12))/(10^(12)(1.6* 10^(- 19))^(2))}](https://img.qammunity.org/2020/formulas/physics/college/s5fu40qtt9xxx31prtvbvviiwz1xnccolc.png)
![L'_(D) = 5.531* 10^(- 6) m](https://img.qammunity.org/2020/formulas/physics/college/lk47824nrthmoujvf2eubw3e0ykautu893.png)
N' =
![(4)/(3)* 10^(12)\pi(5.531* 10^(- 6))^(3) = 7.087* 10^(- 4)](https://img.qammunity.org/2020/formulas/physics/college/ggct69c6dde4p40ankl731e294org7ha4z.png)
(c) n =
KT = 800 eV
![L''_(D) = \sqrt{(800* 1.6* 10^(- 19)* 8.85* 10^(- 12))/(10^(23)(1.6* 10^(- 19))^(2))}](https://img.qammunity.org/2020/formulas/physics/college/xgp8kl2d7hsccak4b0jli0l1ult3jdwk0y.png)
![L''_(D) = 4.43* 10^(- 13) m](https://img.qammunity.org/2020/formulas/physics/college/pve4pmmtsosx4vwpcnooxfqsph9gvaswpb.png)
N'' =
![(4)/(3)* 10^(23)\pi(4.43* 10^(- 13))^(3) = 3.63* 10^(- 14)](https://img.qammunity.org/2020/formulas/physics/college/r4u5ymqnvqotl8lc4rr1qqdzru0dpzq440.png)