Answer:
(a) 498501
(b) 251001
Explanation:
According Gauss's approach, the sum of a series is
.... (1)
where, n is number of terms.
(a)
The given series is
1+2+3+4+...+998
here,
![a_1=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s9zumkdtm5xwbe5tez3sujj0kj01bd86xd.png)
![a_n=998](https://img.qammunity.org/2020/formulas/mathematics/college/ejoh94hd6y4zlncdn56nsgorm5mbcmgxlr.png)
![n=998](https://img.qammunity.org/2020/formulas/mathematics/college/pk3rfahyha6sqwbdg3iq5s0uivok7q19bg.png)
Substitute
,
and
in equation (1).
![sum=(998(1+998))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/vp993p2yww7ykkyjstm55ls7758065p4sg.png)
![sum=499(999)](https://img.qammunity.org/2020/formulas/mathematics/college/q03enxcrkie1riuiotmvwuz6yus3r12eu7.png)
![sum=498501](https://img.qammunity.org/2020/formulas/mathematics/college/4vw04t7q9nmzadf201g3uy9tuwpwx4caqx.png)
Therefore the sum of series is 498501.
(b)
The given series is
1+3+5+7+...+ 1001
The given series is the sum of dd natural numbers.
In 1001 natural numbers 500 are even numbers and 501 are odd number because alternative numbers are even.
![a_1=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s9zumkdtm5xwbe5tez3sujj0kj01bd86xd.png)
![a_n=1001](https://img.qammunity.org/2020/formulas/mathematics/college/uud0r0r28fg4yx3gdylfn0y4fovra5kuah.png)
![n=501](https://img.qammunity.org/2020/formulas/mathematics/college/1ixhwpywn6td9vzp6a8mcke6r3s4d5rmzc.png)
Substitute
,
and
in equation (1).
![sum=(501(1+1001))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/1j6hxbkroqwvye63sno79o059lep19e8ti.png)
![sum=(501(1002))/(2)](https://img.qammunity.org/2020/formulas/mathematics/college/1lxip8nfslmg3x4upkwug6tecmwlp5ifyg.png)
![sum=501(501)](https://img.qammunity.org/2020/formulas/mathematics/college/u7inbpxqu5rv05flah7dgll3bg91xutqu3.png)
![sum=251001](https://img.qammunity.org/2020/formulas/mathematics/college/jckdebgtbfnfmgckbf86yco04ldmrp5wgt.png)
Therefore the sum of series is 251001.