Answer:
(negative charge)
Step-by-step explanation:
Hi!
To solve this problem we use Gauss Law for electric fields, which relates the flux of electric field E through a closed surface S with the charge Q enclosed by that surface:


In this problem S is a cube of side length 2cm. The integral is easy because the electric field is uniform in each face, and normal to the face. The total integral is the sum of the integrals in each of the six faces.

