Answer:
Maximum altitude: 497.96 ft
Horizontal range: 1007.37 ft
Speed at impact: 165.21 ft/s
Step-by-step explanation:
angle(α) = atan (7/6) = 49.4°
Maximum altitude is given by the formula:
![h=(V_0^2sin^2\alpha )/(2g)](https://img.qammunity.org/2020/formulas/mathematics/college/dgtzru1tutpe13cl0x2gv4r34jh52u362l.png)
![h=(100^2 sin^2(49.4))/(2*9.81) =(9770)/(19.62)=497.96 ft/s](https://img.qammunity.org/2020/formulas/mathematics/college/xqs3c61zkhw0xz0jh51sxukjzuim2xe3gn.png)
Horizontal range is given by the formula:
![X=(V_0^2sin(2\alpha))/(g)](https://img.qammunity.org/2020/formulas/mathematics/college/6rfv0dnz3rn25rmmdwjkmlawh5bbuuhaqx.png)
![X=(100^2sin(2*49.4))/(*9.81)=1007.37 ft](https://img.qammunity.org/2020/formulas/mathematics/college/likkgbuymd69amohhaxuckskb78txyg0o6.png)
Speed at impact is given by the formula:
![V_f=√(V_x^2 + Vy^2)](https://img.qammunity.org/2020/formulas/mathematics/college/sns65f2n6lxmmc4o1u9hzdfgnuerf73gn7.png)
where:
![V_x= V_0cos(\alpha )= 100cos(49.4)=65.07 ft/s](https://img.qammunity.org/2020/formulas/mathematics/college/njiv2m0evw8z9wbkfm6659sqcowrlpr6dv.png)
![V_y=V_0sin(\alpha ) + gt=100sin(49.4)+9.81(t)](https://img.qammunity.org/2020/formulas/mathematics/college/7bt5y96lglar6ik95pull0ykatopmyht3w.png)
![t=(V_0sin(\alpha) )/(g)=(100sin(49.4))/(9.81)=7.74s](https://img.qammunity.org/2020/formulas/mathematics/college/k39jmpl56npknxb31rg5712u8unitfmzkf.png)
So;
![V_y= 100sin(49.4)+(9.81)(7.74)= 151.86 ft/s](https://img.qammunity.org/2020/formulas/mathematics/college/drt1y50h35tosf613zqhw2m676h2z61a3c.png)
![Vf=√(V_x^2 + V_y^2) =√(65.07^2+151.86^2)=165.21 ft/s](https://img.qammunity.org/2020/formulas/mathematics/college/452xisaylp09roni30ndu6bouby77sfkmi.png)