Answer:
Approximately 18 units will be produced before the output rate exceeds 12 units per hour.
Step-by-step explanation:
The learning curve formula is given by:
![Y = aX^(b)](https://img.qammunity.org/2020/formulas/mathematics/college/5nu34b86shvpgpu9my5136i9t6aj1l8evu.png)
In which:
Y is the average time per unit.
X is the cumulative number of units produced.
a is the time required to produe the first unit
b = log of learning rate/log 2
In our problem, we have:
Y = 12 units per hour. We are working in minutes, what is the average time per unit?
60 minutes - 12 units
Y minutes - 1 unit
![12Y = 60](https://img.qammunity.org/2020/formulas/mathematics/college/hwxzpoxcokoz2abmrmlcx9p5npklr283vx.png)
![Y = 5](https://img.qammunity.org/2020/formulas/mathematics/college/zhlg2jcwkyy6drsnnmepmbryywrcwkyddk.png)
So Y = 5.
X is the value we want to find
a = 30
b =
![(log 0.65)/(log 2)=-0.6215](https://img.qammunity.org/2020/formulas/mathematics/college/k3u3tka1uit3cj1249bxj4t3tpsyo0z6xk.png)
So
![Y = aX^(b)](https://img.qammunity.org/2020/formulas/mathematics/college/5nu34b86shvpgpu9my5136i9t6aj1l8evu.png)
![5 = 30X^(-0.6215)](https://img.qammunity.org/2020/formulas/mathematics/college/xpsol0ipq4oaud1oub3ch8zrk6m1r0f4n0.png)
![(1)/(6) = (1)/(X^(0.6215))](https://img.qammunity.org/2020/formulas/mathematics/college/oex1adpdl1upfpc9drc8ccbzltg8wuaakk.png)
![X^(0.6215) = 6](https://img.qammunity.org/2020/formulas/mathematics/college/bygqkl3j5jhtjoznp146yyo4xjcbzycvyr.png)
![\sqrt[0.6215]{X^(0.6215)} = \sqrt[0.6215]{6}](https://img.qammunity.org/2020/formulas/mathematics/college/hfa1xpf3sqkr5p73gr6uwe3y1udr7ld8xg.png)
![X = 17.86](https://img.qammunity.org/2020/formulas/mathematics/college/skwe8ynz1rfclur5ka7jfnmojflp81c9x1.png)
Approximately 18 units will be produced before the output rate exceeds 12 units per hour.