Answer:
The gravitational force is 3.509*10^17 times larger than the electrostatic force.
Step-by-step explanation:
The Newton's law of universal gravitation and Coulombs law are:
![F_(N)=G m_(1)m_(2)/r^(2)\\F_(C)=k q_(1)q_(2)/r^(2)](https://img.qammunity.org/2020/formulas/physics/college/66u3etqpc9c33nq1xzgnpwj1bbg525n2ae.png)
Where:
G= 6.674×10^−11 N · (m/kg)2
k = 8.987×10^9 N·m2/C2
We can obtain the ratio of these forces dividing them:
--- (1)
The mass of the moon is 7.347 × 10^22 kilograms
The mass of the earth is 5.972 × 10^24 kg
And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C
Replacing these values in eq1:
![(F_(N))/(F_(C))}}=0.742*10^(-20)(C^(2))/(kg^(2))(7.347*5.972*10^(46)kg^(2))/((9.635*10^(4))^(2))](https://img.qammunity.org/2020/formulas/physics/college/jhz8ckqtyrz8gp9yagpjhj6y5y316kw693.png)
Therefore
![(F_(N))/(F_(C))}}=3.509*10^(17)](https://img.qammunity.org/2020/formulas/physics/college/mp8c2aat3evpaf6jsqdp0fm4l0ifegysha.png)
This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field