Answer:
Equivalent capacitance,
![C'=3.9\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/rfg4bmti00evj5zzwkzmhiexdcq0l73ftx.png)
Step-by-step explanation:
Capacitance,
![C_1=9\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/ldlfnkbz794cq97am7kl78zrjnkmz3m9sp.png)
Capacitance,
![C_2=13\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/b0acorq7h0rodgpafz01jw14p2xv18vzt6.png)
Capacitance,
![C_3=16\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/frgf6eesmg6swgjegnmboolwb911qva5h5.png)
Let C' is the equivalent capacitance of the combination of capacitors. It is given by :
![(1)/(C')=(1)/(C_1)+(1)/(C_2)+(1)/(C_3)](https://img.qammunity.org/2020/formulas/physics/college/aqyzxk4sahry8tazffju9erkn96smhjbg0.png)
![(1)/(C')=(1)/(9)+(1)/(13)+(1)/(16)](https://img.qammunity.org/2020/formulas/physics/college/58ds5tl2uvl0xftk3avb3d1vwxplerrk7m.png)
![C'=3.99\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/havrzem1nyav4w7y5303caq94zkbn1v4ak.png)
or
![C'=3.9\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/rfg4bmti00evj5zzwkzmhiexdcq0l73ftx.png)
So, their equivalent capacitance is
. Hence, this is the required solution.