Answer:
![C_(eq)=1.97\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/c9ka8p7gypxgi1jh2cangwh16rbzsb68b7.png)
Step-by-step explanation:
Given that,
Capacitance 1,
![C_1=0.5\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/m0my7zi4hqynb5q8rfy4e335fy8fledf8r.png)
Capacitance 2,
![C_2=11\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/gx1kzmh0jvlk18o0wabuotu4wxpyabm460.png)
Capacitance 3,
![C_3=1.5\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/or38g3dcr3ws3sb3c4pmiibbo4sw6rv4v1.png)
C₁ and C₂ are connected in series. Their equivalent is given by :
![(1)/(C')=(1)/(C_1)+(1)/(C_2)](https://img.qammunity.org/2020/formulas/physics/college/x20ups90c6usyn4g0noz43qdl2sch4po9m.png)
![(1)/(C')=(1)/(0.5)+(1)/(11)](https://img.qammunity.org/2020/formulas/physics/college/4w1yl6a9p6bouiy8zv1n7qbaejjgzz1mi7.png)
![C'=0.47\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/xld5ms8yjbeouyc94jejk3raau24s4bbfg.png)
Now C' and C₃ are connected in parallel. So, the final equivalent capacitance is given by :
![C_(eq)=C'+C_3](https://img.qammunity.org/2020/formulas/physics/college/by5boehb50eq2qmbwixgbjpiu1j9oiha7u.png)
![C_(eq)=0.47+1.5](https://img.qammunity.org/2020/formulas/physics/college/k3ctpu1hlomozh8rudgih6umpn5pgyrdr4.png)
![C_(eq)=1.97\ \mu F](https://img.qammunity.org/2020/formulas/physics/college/c9ka8p7gypxgi1jh2cangwh16rbzsb68b7.png)
So, the equivalent capacitance of the combination is 1.97 micro farad. Hence, this is the required solution.