148k views
4 votes
Wes stands on the roof of a building, leans over the edge, and drops a rock. Lindsay waits 1.20 s after Wes releases his rock and throws her own rock straight down at 21.0 m/s. Both rocks hit the ground simultaneously. 1) Calculate the common height from which the rocks were released. Ignore the effects of air resistance. (Express your answer to three significant figures.)

1 Answer

5 votes

Final answer:

To calculate the common height from which the rocks were released, use the equations of motion. Substitute the given values and solve for the height using the equations h = (1/2)gt^2 and h = v0t + (1/2)gt^2.

Step-by-step explanation:

To calculate the common height from which the rocks were released, we need to use the equations of motion. Let's assume the common height is h. For Wes, the time taken to reach the ground is given as 1.20 s. Using the equation h = (1/2)gt^2, where g is the acceleration due to gravity, we can substitute the values and solve for h. For Lindsay, the time taken to reach the ground is the same, 1.20 s. Using the equation h = v0t + (1/2)gt^2, where v0 is the initial velocity, we can substitute the values and solve for h. By calculating the common height from these two equations, we can determine the height from which the rocks were released.

User Denson
by
5.5k points