Answer:
11.39
Step-by-step explanation:
Given that:
![pK_(b)=4.82](https://img.qammunity.org/2020/formulas/chemistry/college/5ejndqe42b6nkpmefkj19hh6optduewqhb.png)
![K_(b)=10^(-4.82)=1.5136* 10^(-5)](https://img.qammunity.org/2020/formulas/chemistry/college/mdrvuwxe33txp9x0pm26adx70syatfwf9q.png)
Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:
![moles = (Mass\ taken)/(Molar\ mass)](https://img.qammunity.org/2020/formulas/chemistry/college/56oqyn9ahez5sfc5ssfzzy40tpn0mkmrwj.png)
Thus,
![Moles= (1.805\ g)/(82.0343\ g/mol)](https://img.qammunity.org/2020/formulas/chemistry/college/sj2t4jfp8nb8pi51uo3xdnbjrqvwz1h6wz.png)
![Moles= 0.022\ moles](https://img.qammunity.org/2020/formulas/chemistry/college/5al2wlyh9d1s29dewpbchbs5231772lgut.png)
Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)
![Molarity=(Moles\ of\ solute)/(Volume\ of\ the\ solution)](https://img.qammunity.org/2020/formulas/chemistry/college/iqk2w32r8vnkhr4ni2376l9dhda7piaifr.png)
![Molarity=(0.022)/(0.055)](https://img.qammunity.org/2020/formulas/chemistry/college/ge76qwh7yr52b26s6ofwttdxbgte15g2mi.png)
Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
![K_(b)=\frac {\left [ BH^(+) \right ]\left [ {OH}^- \right ]}{[B]}](https://img.qammunity.org/2020/formulas/chemistry/college/6ctjsulxcobg3ekia7jkacqhhm25r4bjsp.png)
![1.5136* 10^(-5)=\frac {x^2}{0.4-x}](https://img.qammunity.org/2020/formulas/chemistry/college/8mj76ua7r43mi41yb1ebem8dmoamvqsgy8.png)
x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
pH = 14 - pOH = 14 - 2.61 = 11.39