Answer:
- R = ( 4.831 m , 1.469 m )
- Direction of R relative to the x axis= 16°54'33'
Step-by-step explanation:
Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula
![\vec{A}= | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )](https://img.qammunity.org/2020/formulas/physics/college/qtr45pnwrm2lmu0pbx9zkvsranezt4t8jt.png)
where
its the magnitude and θ.
So, for our vectors, we will have:
![\vec{D}= 3.00 m \ ( \ cos(315) \ , \ sin (315) \ )](https://img.qammunity.org/2020/formulas/physics/college/sj65f8i1oad2aoeezssp4scj9il1ih7l5u.png)
![\vec{D}= ( 2.121 m , -2.121 m )](https://img.qammunity.org/2020/formulas/physics/college/pe4v7phqzcmnbcvhyxw9an5fohz7jtg176.png)
and
![\vec{E}= 4.50 m \ ( \ cos(53.0) \ , \ sin (53.0) \ )](https://img.qammunity.org/2020/formulas/physics/college/hfqiqdwvezij8ouy37kadxe4ngyhd8e8qv.png)
![\vec{E}= ( 2.71 m , 3.59 m )](https://img.qammunity.org/2020/formulas/physics/college/yveogkduwys3jqaxjw3p4pmnqfj397sbeq.png)
Now, we can take the sum of the vectors
![\vec{R} = \vec{D} + \vec{E}](https://img.qammunity.org/2020/formulas/physics/college/53epn5lllo529ydesaihhodcnkhge39j4s.png)
![\vec{R} = ( 2.121 \ m , -2.121 \ m ) + ( 2.71 \ m , 3.59 \ m )](https://img.qammunity.org/2020/formulas/physics/college/yroazimxmcctvat8tt13i2i3x78jfa2zuj.png)
![\vec{R} = ( 2.121 \ m + 2.71 \ m , -2.121 \ m + 3.59 \ m )](https://img.qammunity.org/2020/formulas/physics/college/6hjqyo3zv0jkxroce23b1c90m9khbr639h.png)
![\vec{R} = ( 4.831 \ m , 1.469 \ m )](https://img.qammunity.org/2020/formulas/physics/college/zbs3byx6moh99z5f5z5k3dxuz4tzhn0odb.png)
This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem
![|\vec{R}| = √(R_x^2 + R_y^2)](https://img.qammunity.org/2020/formulas/physics/college/cra4ei2pgq1x2qzwu03y90pn2kvvz6qvxq.png)
![|\vec{R}| = √((4.831 m)^2 + (1.469 m)^2)](https://img.qammunity.org/2020/formulas/physics/college/uz5hf5db3n024wbds9eeh836ukhkg3zdrx.png)
![|\vec{R}| = √(23.338 m^2 + 2.158 m^2)](https://img.qammunity.org/2020/formulas/physics/college/lc5zbwtva78up9q78drcjfat603zyfs3bj.png)
![|\vec{R}| = √(25.496 m^2)](https://img.qammunity.org/2020/formulas/physics/college/5w109kxh7lbkej0gn3oun2o9cte4m0fn0w.png)
![|\vec{R}| = 5.049 m](https://img.qammunity.org/2020/formulas/physics/college/p5ozb363gh8sw3z1aurt649pzww73ewl94.png)
To find the direction, we can use
![\theta = arctan((R_y)/(R_x))](https://img.qammunity.org/2020/formulas/physics/college/xmvjf6khj8foc0qox3x4wsfu075l842mdb.png)
![\theta = arctan((1.469 \ m)/(4.831 \ m))](https://img.qammunity.org/2020/formulas/physics/college/fbhs6gpvu1yg2ixyq5p0g89gaa1144m35a.png)
![\theta = arctan(0.304)](https://img.qammunity.org/2020/formulas/physics/college/2xso1j3usongyxkq7b1qcx6kxizry8c43i.png)
![\theta = 16\°54'33''](https://img.qammunity.org/2020/formulas/physics/college/5tpss7hmrgnos4682j2c3q68vszbw1mjzy.png)
As we are in the first quadrant, this is relative to the x axis.