91.9k views
1 vote
The equation giving a family of ellipsoids is u = (x^2)/(a^2) + (y^2)/(b^2) + (z^2)/(c^2) . Find the unit vector normal to each point of the surface of this ellipsoids.

1 Answer

1 vote

Answer:


\hat{n}\ =\ \ \frac{(x)/(a^2)\hat{i}+\ (y)/(b^2)\hat{j}+\ (z)/(c^2)\hat{k}}{\sqrt{((x)/(a^2))^2+((y)/(b^2))^2+((z)/(c^2))^2}}

Explanation:

Given equation of ellipsoids,


u\ =\ (x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(c^2)

The vector normal to the given equation of ellipsoid will be given by


\vec{n}\ =\textrm{gradient of u}


=\bigtriangledown u


=\ (\frac{\partial{}}{\partial{x}}\hat{i}+ \frac{\partial{}}{\partial{y}}\hat{j}+ \frac{\partial{}}{\partial{z}}\hat{k})((x^2)/(a^2)+(y^2)/(b^2)+(z^2)/(c^2))


=\ \frac{\partial{((x^2)/(a^2))}}{\partial{x}}\hat{i}+\frac{\partial{((y^2)/(b^2))}}{\partial{y}}\hat{j}+\frac{\partial{((z^2)/(c^2))}}{\partial{z}}\hat{k}


=\ (2x)/(a^2)\hat{i}+\ (2y)/(b^2)\hat{j}+\ (2z)/(c^2)\hat{k}

Hence, the unit normal vector can be given by,


\hat{n}\ =\ \frac{\vec{n}}{\left|\vec{n}\right|}


=\ \frac{(2x)/(a^2)\hat{i}+\ (2y)/(b^2)\hat{j}+\ (2z)/(c^2)\hat{k}}{\sqrt{((2x)/(a^2))^2+((2y)/(b^2))^2+((2z)/(c^2))^2}}


=\ \frac{(x)/(a^2)\hat{i}+\ (y)/(b^2)\hat{j}+\ (z)/(c^2)\hat{k}}{\sqrt{((x)/(a^2))^2+((y)/(b^2))^2+((z)/(c^2))^2}}

Hence, the unit vector normal to each point of the given ellipsoid surface is


\hat{n}\ =\ \ \frac{(x)/(a^2)\hat{i}+\ (y)/(b^2)\hat{j}+\ (z)/(c^2)\hat{k}}{\sqrt{((x)/(a^2))^2+((y)/(b^2))^2+((z)/(c^2))^2}}

User Blagae
by
5.7k points