Answer:
![\rm |q_1|=8.0* 10^(-7)\ C,\ \ \ |q_2| = 4.6* 10^(-6)\ C.](https://img.qammunity.org/2020/formulas/physics/college/f65sghtyic7315dci31x969lcbctlubbgk.png)
Step-by-step explanation:
According to the Coulomb's law, the magnitude of the electrostatic force between two static point charges
and
, separated by a distance
, is given by
![\rm F = (kq_1q_2)/(r^2).](https://img.qammunity.org/2020/formulas/physics/college/hccmlwz8u1qyvndmfywq7qd20amr17zfcv.png)
where k is the Coulomb's constant.
Initially,
![\rm r = 0.160\ m\\F_i = -1.30\ N.\\\\and \ \ |q_2|>|q_1|.](https://img.qammunity.org/2020/formulas/physics/college/owkd3n762wqgzife1hhdwei4jnqtgtnxni.png)
The negative sign is taken with force F because the force is attractive.
Therefore, the initial electrostatic force between the charges is given by
![\rm F_i = (kq_1q_2)/(r^2).\\-1.30=(kq_1q_2)/(0.160^2)\\\rm\Rightarrow q_2 = (-1.30* 0.160^2)/(q_1k)\ \ \ ..............\ (1).](https://img.qammunity.org/2020/formulas/physics/college/2ubu0qo9nmz9a6ve5ldft5xlmorfc0eioa.png)
Now, the objects are then brought into contact, so the net charge is shared equally, and then they are returned to their initial positions.
The force is now repulsive, therefore,
![\rm F_f = +1.30\ N.](https://img.qammunity.org/2020/formulas/physics/college/m8kwn3m5hgu402eq4h7d213x9jjcriy16i.png)
The new charges on the two objects are
![\rm q_1'=q_2' = (q_1+q_2)/(2).](https://img.qammunity.org/2020/formulas/physics/college/5x2k4uhp2rflinl8910dzpxeicyp9udtsf.png)
The new force is given by
![\rm F_f = (kq_1'q_2')/(r^2)\\+1.30=(k\left ((q_1+q_2)/(2)\right )\left ((q_1+q_2)/(2)\right ))/(0.160^2)\\\Rightarrow \left ((q_1+q_2)/(2)\right )^2=(+1.30* 0.160^2)/(k)\\(q_1+q_2)^2=(4* 1.30* 0.160^2)/(k)\\q_1^2+q_2^2+2q_1q_2=(4* 1.30* 0.160^2)/(k)\\\\](https://img.qammunity.org/2020/formulas/physics/college/x3snmbyg5skmqlbgw0l6oyo6rvs3ziu4gx.png)
Using (1),
![\rm q_1^2+\left ( (-1.30* 0.160^2)/(q_1k)\right )^2+2\left ((-1.30* 0.160^2)/(k) \right )=(4* 1.30* 0.160^2)/(k)\\q_1^2+\frac 1{q_1^2}\left ( (-1.30* 0.160^2)/(k)\right )^2-\left ((6* 1.30* 0.160^2)/(k) \right )=0\\q_1^4+\left ( (-1.30* 0.160^2)/(k)\right )^2-q_1^2\left ((6* 1.30* 0.160^2)/(k) \right )=0](https://img.qammunity.org/2020/formulas/physics/college/ycdgs7nxhekxd0cbi923kcheudxbbwok7q.png)
![\rm q_1^4+\left ( (-1.30* 0.160^2)/(k)\right )^2-q_1^2\left ((6* 1.30* 0.160^2)/(k) \right )=0\\q_1^4+\left ( (-1.30* 0.160^2)/(9* 10^9)\right )^2-q_1^2\left ((6* 1.30* 0.160^2)/(9* 10^9) \right )=0\\q_1^4-q_1^2\left ((6* 1.30* 0.160^2)/(9* 10^9) \right )+\left ( (-1.30* 0.160^2)/(9* 10^9)\right )^2=0](https://img.qammunity.org/2020/formulas/physics/college/y5wlty78hwy0wbszeeu9x8eyhbvzqieie5.png)
![\rm q_1^4-q_1^2\left (2.22* 10^(-11) \right )+\left ( 1.37* 10^(-23)\right ) =0\\\Rightarrow q_1^2 = \frac{-(-2.22* 10^(-11))\pm \sqrt{(-2.22* 10^(-11))^2-4\cdot (1)\cdot (1.37* 10^(-23))}}{2}\\=1.11* 10^(-11)\pm 1.046* 10^(-11).\\=6.4* 10^(-13)\ \ \ or\ \ \ 2.156* 10^(-11)\\\Rightarrow q_1 = \pm 8.00* 10^(-7)\ C\ \ \ or\ \ \ \pm 4.64* 10^(-6)\ C.](https://img.qammunity.org/2020/formulas/physics/college/t5xbdm3fbf11tdvgcsgsff5wsqrdzde78s.png)
Using (1),
When
,
![\rm q_2=(-1.30* 0.160^2)/(\pm 8.00* 10^(-7)* 9* 10^9)=\mp4.6* 10^(-6)\ C.](https://img.qammunity.org/2020/formulas/physics/college/sb4shdh9sjgq2ejb7tzw6jhjnr21jlxvy5.png)
When
,
![\rm q_2=(-1.30* 0.160^2)/(\pm 4.64* 10^(-6)* 9* 10^9)=\mp7.97* 10^(-7)\ C\approx 8.0* 10^(-7)\ C.](https://img.qammunity.org/2020/formulas/physics/college/f75yje5e27pnhmwyl80gve9gvt5cuyhshf.png)
Since,
![\rm |q_2|>|q_1|](https://img.qammunity.org/2020/formulas/physics/college/95agsaykh7bssl0kyic6bb1ek5ua2k46lh.png)
Therefore,
![\rm |q_1|=8.0* 10^(-7)\ C,\ \ \ |q_2| = 4.6* 10^(-6)\ C.](https://img.qammunity.org/2020/formulas/physics/college/f65sghtyic7315dci31x969lcbctlubbgk.png)