48.6k views
5 votes
Given: ABCD trapezoid, BK ⊥ AD , AB=DC AB=8, AK=4 Find: m∠A, m∠B

1 Answer

4 votes

Answer:


m\angle B=m\angle C=120^(\circ)


m\angle A=m\angle D=60^(\circ)

Explanation:

Trapezoid ABCD is isosceles trapezoid, because AB = CD (given). In isosceles trapezoid, angles adjacent to the bases are congruent, then


  • \angle A\cong \angle D;

  • \angle B\cong \angle C.

Since BK ⊥ AD, the triangle ABK is right triangle. In this triangle, AB = 8, AK = 4. Note that the hypotenuse AB is twice the leg AK:


AB=2AK.

If in the right triangle the hypotenuse is twice the leg, then the angle opposite to this leg is 30°, so,


m\angle ABK=30^(\circ)

Since BK ⊥ AD, then BK ⊥ BC and


m\angle KBC=90^(\circ)

Thus,


m\angle B=30^(\circ)+90^(\circ)=120^(\circ)\\ \\m\angle B=m\angle C=120^(\circ)

Now,


m\angle A=m\angle D=180^(\circ)-120^(\circ)=60^(\circ)

Given: ABCD trapezoid, BK ⊥ AD , AB=DC AB=8, AK=4 Find: m∠A, m∠B-example-1
User Amateur Barista
by
9.0k points