Answer:
The speed of the electron is 91.86 m/s.
Step-by-step explanation:
Given that,
Distance of electron from proton = 6.00 cm
Distance of proton = 3.00 cm
We need to calculate the initial potential energy
![U_(1)=(kq_(1)q_(2))/(r)](https://img.qammunity.org/2020/formulas/physics/college/gdvzgg6ksuneenhy0zymfrwxn3btv1mwgi.png)
Put the value into the formula
![U_(i)=(9*10^(9)*(1.6*10^(-19))^2)/(6.00*10^(-2))](https://img.qammunity.org/2020/formulas/physics/college/sw3124i9r9zg79dunqn8eewju8rnyfsyp1.png)
![U_(i)=3.84*10^(-27)\ J](https://img.qammunity.org/2020/formulas/physics/college/7iqdfqe3zm3ibx57piih0b5lrqusuax1r9.png)
The final potential energy
![U_(f)=(9*10^(9)*(1.6*10^(-19))^2)/(3.00*10^(-2))](https://img.qammunity.org/2020/formulas/physics/college/xrmtkpx3uix3w0tiwj4w18ihshc4mer4u6.png)
![U_(f)=7.68*10^(-27)\ J](https://img.qammunity.org/2020/formulas/physics/college/6iid5vdyd208attkl9poebc3etokcs94x9.png)
We need to calculate the speed of the electron
Using conservation of energy
![(1)/(2)mv^2=U_(f)-U_(i)](https://img.qammunity.org/2020/formulas/physics/college/sifado8l82loy4vpjvau25jzroup0nqv7z.png)
Put the value into the formula
![(1)/(2)*9.1*10^(-31)* v^2=7.68*10^(-27)-3.84*10^(-27)](https://img.qammunity.org/2020/formulas/physics/college/dtpnfdkle3m0x903uyhdoyarnwrharpy57.png)
![v=\sqrt{(2*3.84*10^(-27))/(9.1*10^(-31))}](https://img.qammunity.org/2020/formulas/physics/college/6tc2vkfokqm3qu0o8m45gme7zv6oqwg8l0.png)
![v=91.86\ m/s](https://img.qammunity.org/2020/formulas/physics/college/p8fflv2us193e9uqht9zszpksvumt2v6od.png)
Hence, The speed of the electron is 91.86 m/s.