Answer:
6
Explanation:
Given information:
Interior angle of a polygon cannot be more that 180°.
One interior angle =
![80^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/wvhdur0y46hndequn8wvk6h1rhbo49tgz2.png)
Other interior angles are =
![128^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/college/lb77t0bp86tato5r4hns77xa2bqf2rde2s.png)
Let n be the number of sides of the polygon.
Sum of interior angles is
![Sum=80+128(n-1)](https://img.qammunity.org/2020/formulas/mathematics/college/tu9in49ne4yspbmfjgtvl70c1mrvlfzbb5.png)
![Sum=80+128n-128](https://img.qammunity.org/2020/formulas/mathematics/college/61qgqdu2v16akb70e4obxsan710uqftywp.png)
Combine like terms.
.... (1)
If a polygon have n sides then the sum of interior angles is
![Sum=(n-2)180](https://img.qammunity.org/2020/formulas/mathematics/college/4eetxt1pfe4wt0jmq7xmn7xlu8f6wpeyj6.png)
.... (2)
Equating (1) and (2) we get
Isolate variable terms.
Divide both sides by 52.
Therefore the number of sides of the polygon is 6.